РАЗРАБОТКА ТЕОРЕТИЧЕСКОЙ МОДЕЛИ ОЧИЩАЮЩЕЙ СПОСОБНОСТИ ЧЕСАЛЬНОЙ МАШИНЫ

С.С. Гришанова

На кафедре «ПНХВ» УО «ВГТУ» разработана технология производства пряжи линейных плотностей 110-142 текс из короткого льняного волокна сухим способом. По разработанной технологии процесс кардочесания короткого льноволокна осуществляется на чесальной машине Ч-600-Л1. Одной из главных функций чесальной машины (помимо разъединения волокон) является удаление из перерабатываемого материала сорных примесей и костры. Высокая очищающая способность кардочесальной машины стабилизирует процессы, происходящие на последующих переходах. Особенно важную роль чесальная машина имеет в подготовке волокна к гребнечесанию. Кардочесание является переходом, где выделяется до 70% костры и крупных сорных примесей. В то время как на гребнечесальной машине удаляются в основном мелкие сорные примеси и костра. А гребнечесание продукта с наличием крупных сорных примесей приводит к быстрому забиванию гарнитуры гребенного барабанчика и верхнего гребня, а следовательно, к плохому качеству прочеса, частым остановам машины для чистки, быстрому износу чешущей гарнитуры, снижению производительности.

При кардочесании короткого льняного волокна на кардочесальной машине Ч-600-Л1 в зоне барабана предпрочеса и рабочей пары под ним выделяется до 70% костры и сорных примесей. Кроме того, основными зонами выделения сорных примесей костры являются зоны рабочий валик - чистильный валик. Как известно, от первой рабочей пары к последней количество выделенных сорных примесей уменьшается. Наиболее интенсивно выделение происходит в первых трех рабочих парах, затем количество выделяемого сора снижается, и в зоне шестой и седьмой рабочих пар процесс больше направлен на распрямление волокна, чем на очистку. Экспериментальным путем установлено, что первые три пары выделяют - по 10% сорных примесей и костры, четвертая и пятая - по 8%, а шестая и седьмая - около по 7%.

Для построения модели очищающей способности чесальной машины рассмотрим движение отходов в процессе чесания. Для этого воспользуемся математическим аппаратом теории цепей Маркова [1] и примем следующие допущение, что чесальная машина не создает пороков.

С целью последующего обобщения рассмотрим упрощенную схему чесальной машины с одним приемным барабаном, семью точками поглощения отходов и двумя съемными барабанами.

Блок-схема движения отходов в такой машине представлена на рисунке 2.5.

Вестник УО ВГТУ 27

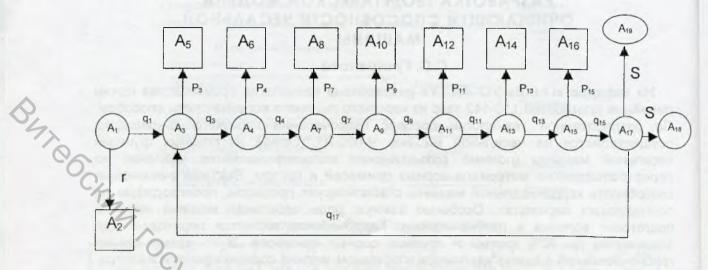


Рисунок 1 – Блок-схема движения отходов в чесальной машине:

А1 – приемный барабан

А3,А4,А7,А9,А11,А13,А15 — зоны взаимодействия главного барабана и рабочих пар (зоны очистки)

А17- зона главного барабана с остаточной загрузкой

А2,А5,А8,А10,А12,А14,А16 — зоны выделения костры и сорных примесей (поглощения пороков)

А18,А19 - 1-й и 2-ой съемные барабаны

q1.... q17 – вероятность невычесывания отходов

Р1....Р15 - вероятность вычесывания отходов

R – вероятность вычесывание отходов приемным барабаном

\$1,\$2 - вероятность перехода отходов в прочес

Каноническая форма матрицы перехода отходов за один шаг имеет следующий вид:

$$P = \begin{vmatrix} I & O \\ R & Q \end{vmatrix}$$

- где I единичная субматрица поглощающих состояний; компоненты главной диагонали ее равны нулю;
 - О нулевая субматрица перехода из поглощающих состояний в транзитные; все ее компоненты равны нулю;
 - R субматрица перехода из транзитных состояний в поглощающие;
 - Q субматрица перехода из одних транзитных состояний в другие.

Общий вид канонической формы матрицы перехода поглощающей цепи:

	2	5	6	8	10	12	14	16	18	19	1	3	4	7	9	11	13	15	17
2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	R	0	0	0	0	0	0	0	0	0	0	\mathbf{q}_1	0	0	0	0	0	0	0
3	0	P_3	0	0	0	0	0	0	0	0	0	0	\mathbf{q}_3	0	0	0	0	0	
4	0	0	P ₄	0	0	0	0	0	0	0	0	0	0	q_4	0	0	0	0	0
7	0	0	0	P ₇	0	0	0	0	0	0	0	0	0	0	q ₇	0	0	0	0
9	0	0	0	0	P ₉	0	0	0	0	0	0	0	0	0	0	\mathbf{q}_9	0	0	0
11	0	0	0	0	0	P ₁₁	0	0	0	0	0	0	0	0	0	0	q ₁₁	0	0
13	0	0	0	0	0	0	P ₁₃	0	0	0	0	0	0	0	0	0	0	q ₁₃	0
15	0	0	0	0	0	0	0	P ₁₅	0	0	0	0	0	0	0	0	0	0	q ₁₅
17	0	0	0	0	0	0	0	0	S ₁	S ₂	0	q ₁₇₇	0	0	0	0	0	0	0

Вычисляем элементы 1-ой строки основной матрицы $N=(I-Q)^{-1}$. Для этого сначала определяем матрицу I-Q. Определитель этой матрицы:

$$\begin{aligned} |I - Q| &= \Delta = 1 - g_3 \cdot g_4 \cdot g_7 \cdot g_9 \cdot g_{11} \cdot g_{15} \cdot g_{17} = \\ &= 1 - g_3 \cdot g_4 \cdot g_7 \cdot g_9 \cdot g_{11} \cdot g_{15} \cdot (1 - S_1 - S_2) \end{aligned}$$

Вычислив алгебраические дополнения к элементам первого столбца, найдем первую строку матрицы $N=(I-Q)^{-1}$, которая имеет вид

	1	3	4	7	9	11,	13
N ₁ :	1	$\frac{g_1}{\Delta}$	$\frac{g_1g_3}{\Delta}$	$\frac{g_1g_3g_4}{\Delta}$	$\frac{g_1g_3g_4g_7}{\Delta}$	$\frac{g_1g_3g_4g_7g_9}{\Delta}$	$\frac{g_1g_3g_4g_7g_9g_1}{\Delta}$
	15	5		17			4,
gig	38487	$g_9g_{11}g_{13}$	g_1g_3g	487898118	213 215		1/1

Вероятность поглощения системы (отходов) определенным поглощающим состоянием определяется матрицей B=N·R, первая строка которой имеет вид

	2	5	6	8	10	12	14
B ₁ :	R	$\frac{P_3g}{\Delta}$	$\frac{P_4g_1g_3}{\Delta}$	$\frac{P_7g_1g_3g_4}{\Delta}$	$\frac{P_9g_1g_3g_4g_7}{\Delta}$	$\frac{P_{11}g_1g_3g_4g_7g}{\Delta}$	$\frac{P_{13}g_{1}g_{3}g_{4}g_{7}g_{9}g_{11}}{\Delta}$

16	18	19
$P_{15}g_1g_3g_4g_7g_9g_{11}g_{13}$	$S_1g_1g_3g_4g_7g_9g_{11}g_{13}g_{15}$	$S_2g_1g_3g_4g_7g_9g_{11}g_{13}g_{15}$
Δ	Δ	Δ

Вероятность того, что костра будет выделена в процессе чесания и не попадет в прочес, равна сумме первых восьми элементов первой строки матрицы В:

$$H = R + \frac{g_1}{\Delta} \cdot \left(P_3 + P_4 g_3 + P_7 g_3 g_4 + P_9 g_3 g_4 g_7 + P_{11} g_3 g_4 g_7 g_9 + P_{13} g_3 g_4 g_7 g_9 g_{11} + P_{12} g_3 g_4 g_7 g_9 g_{12} + P_{13} g_3 g_4 g_7 g_9 g_{13} + P_{13} g_3 g_4 g_7 g_9 g_{13} + P_{14} g_3 g_4 g_7 g_9 g_{14} + P_{14} g_3 g_4 g_7 g_9 g_7 g$$

$$+P_{15}g_{3}g_{4}g_{7}g_{9}g_{11}g_{13} \quad)=R+\frac{1-R}{1-g_{3}g_{4}g_{7}g_{9}g_{11}g_{13}g_{15}\left(1-S_{1}-S_{2}\right)}\left(P_{3}+P_{4}g_{3}+$$

$$P_{7}g_{3}g_{4} + P_{9}g_{3}g_{4}g_{7} + P_{11}g_{3}g_{4}g_{7}g_{9} + P_{13}g_{3}g_{4}g_{7}g_{9}g_{11} + P_{15}g_{3}g_{4}g_{7}g_{9}g_{11}g_{13}$$
,(1)

где g_i=1 - P_i.

При построении модели очищающей способности чесальной машины Ч-600-Л1 при кардочесании короткого льняного волокна нельзя не учесть класс гарнитуры используемой на машине. А также не маловажным фактором является специфика льняного волокна, а в частности наличие недоработки в волокне. Недоработкой называется волокно, на котором имеется плотно скрепленная с ним древесина - сплошь или с небольшими промежутками на длине не менее 5см. Наличие большого количества недоработки в волокне значительно затрудняет процесс очистки. Разработан метод определения содержания недоработки от общего количества костры в волокне.

Тогда вид модели очищающей способности чесальной машины Ч-600-Л1 при кардочесании короткого льняного волокна с учетом поправочных коэффициентов следующий:

$$H = \left(R + \frac{1 - R}{1 - g_3 g_4 g_7 g_9 g_{11} g_{13} g_{15} \left(1 - S_1 - S_2\right)} \left(P_3 + P_4 g_3 + \frac{1 - R}{1 - g_3 g_4 g_7 g_9 g_{11} g_{13} g_{15} \left(1 - S_1 - S_2\right)}\right)$$

$$P_{7}g_{3}g_{4} + P_{9}g_{3}g_{4}g_{7} + P_{11}g_{3}g_{4}g_{7}g_{9} + P_{13}g_{3}g_{4}g_{7}g_{9}g_{11} + P_{15}g_{3}g_{4}g_{7}g_{9}g_{11}g_{13})) \cdot 100 \cdot K_{1} \cdot K_{2}$$
(2)

где K₁ – коэффициент, учитывающий процент содержания недоработки в общем количестве костры в волокне;

 K_{2} - коэффициент, характеризующий класс гарнитуры;

q1.... q17 – вероятность невычесывания отходов;

R - вероятность вычесывание отходов приемным барабаном;

\$1,\$2 - вероятность перехода отходов в прочес.

В таблице 1 приведены поправочные коэффициенты в зависимости от процента содержания недоработки в общем количестве костры в волокне.

Таблица 1 - Принятые коэффициенты К₁

Количество недоработки в общем количестве костры в волокне	в Поправочный коэффициент К₁
до 5%	1,3
от 5% до 10%	1,2
от 10% до 20%	1,1
от 20% до 30%	1
от 30% до 40%	0,9
от от 40% до 50%	0,8
более 50%	0,7

В таблице 2 приведены принятые коэффициенты К2.

Таблица 2 - Принятые коэффициенты К2.

Класс гарнитуры	1 класс	2 класс	3 класс
K ₂	on and the pay had	1,4	1,6

Разработана методика расчета очищающей способности чесальной машины Ч-600-Л1 с учетом специфических свойств льна и степени очистки валиков рабочих пар. В таблице 3 представлены фактические и теоретические значения очищающей способности чесальной машины, рассчитанные по разработанной методике.

Таблица 3 - Значения очищающей способности чесальной машины

CO Hamana Para Para Para Para Para Para Para P	Значение показателя			
Наименование показателя	І вариант	II вариант		
Степень очистки в ниж. рабочих парах 1-3	10,61	9,2		
Степень очистки в сред. рабочих парах 4-7	14,71	12,7		
Класс гарнитуры		11		
Количество недоработки в общем количестве костры в волокне, %	15	9		
Очищающая способность чесальной машины:				
- фактическая	58,58	87,71		
- теоретическая	58,05	86,71		

Сравнительный анализ фактических и теоретических значений очищающей способности чесальной машины подтверждает адекватность разработанной модели. Разработанная теоретическая модель очищающей способности чесальной машины Ч-600-Л1 позволяет прогнозировать степень очистки короткого льняного волокна на чесальной машине с учетом процента содержания недоработки в общем количестве костры в волокне; класса гарнитуры чесальной машины и степени очистки валиков рабочих пар. Как известно, степень очистки валиков рабочих пар зависит от скорости вращения рабочего и чистильного валиков. А определение оптимального режима работы чесальной машины сводится к тому, чтобы при высокой производительности обеспечить требуемую степень чесания волокна, что достигается в основном подбором скоростей рабочих валиков. Т.е. разработанную теоретическую модель удобно использовать при подборе оптимальных параметров работы чесальной машины для прогнозирования результата очистки волокна.

выводы

Разработана теоретическая модель очищающей способности чесальной машины Ч-600-Л1, которая учитывает специфические свойства льна и степень очистки валиков рабочих пар.

Разработана методика расчета очищающей способности чесальной машины Ч-600-Л1 с учетом процента содержания недоработки в общем количестве костры в волокне; степени очистки валиков рабочих пар и класса гарнитуры чесальной машины.

Список использованных источников

1. Труевцев, Н.И. Теория и практика кардочесания в аппаратной системе прядения шерсти / Н.И. Труевцев, Н.М. Ашнин. - Москва: Легкая индустрия, 1967. -228с.