

Рисунок 1 — Приборы для определения количественных показателей цвета: a — высокоточный цифровой колориметр; δ —спектрофотометр

Однако кроме спектральной кривой, колориметры и спектрофотометры могут представить измеренные данные в колориметрических координатах цвета, например в XYZ или CIE L*a*b*. Координаты цвета получаются расчетным путем из спектрального коэффициента отражения (пропускания), спектрального распределения энергии источника освещения и кривых сложения стандартного наблюдателя (отражающих свойства рецепторов человеческого глаза). Цветовое различие между двумя образцами традиционно определяется как расстояние между их цветовыми координатами в цветовом пространстве СIE L*a*b*.

В статье рассмотрены способы формирования потребительских свойств текстильных материалов в условиях акустических колебаний ультразвукового диапазона. Авторами продемонстрирована возможность использования методов экспертных оценок для ранжирования потребительских свойств текстильных материалов с цель установить их значимость в соответствии с назначением материала. Рассмотрены методы определения устойчивости окрашенных материалов к физико-химическим воздействиям, недостатком которых является их субъективность, то есть выставление оценки качества основываясь на органолептических методах. Рассмотрены приборы, позволяющие получить количественную оценку показателей качества окрашенных материалов при помощи новых.

Список использованных источников

- 1. Бизюк, А. Н., Жерносек, С. В., Ольшанский, В. И., Ясинская, Н. Н. / Исследование влияния СВЧ-излучения на показатели качества тканых полотен, Известия высших учебных заведений, Технология текстильной промышленности, 2014, № 2 (350), С. 17–20.
- 2. Кульнев, А. О. (2017) Крашение текстильных материалов из полиэфирных волокон с использованием ультразвукового воздействия / А. О. Кульнев, С. В. Жерносек, Н. Н. Ясинская, В. И. Ольшанский, А. Г. Коган // Вестник Витебского государственного технологического университета. № 1(32). С. 155
- 3. Сафонов, В. В. Интенсификация химико-текстильных процессов отделочного производства, Москва, 405 с.

УДК 677.023.77

ПРИМЕНЕНИЕ УЛЬТРАЗВУКОВОЙ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ ДЛЯ ИНТЕНСИФИКАЦИИ МОКРОГО ПРЯДЕНИЯ ЛЬНА

Прохоренко О.В., асп., Коган А.Г., проф.,

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат</u>. Целью проводимых исследований является получение льняной пряжи способом мокрого прядения, путём применения ультразвукового излучения. В работе проведен эксперимент, с целью оценить возможность применения ультразвукового излучения для увеличения степени мацерации льняного волокна. Результаты

УО «ВГТУ», 2018 3**03**

исследований показывают увеличение разрывной нагрузки при применении УЗ, по сравнению с базовым способом.

<u>Ключевые слова</u>: льняное волокно, пряжа, ультразвуковое воздействие, степень мацерации.

Получение льняной пряжи при мокром прядении происходит из элементарных волокон и их небольших комплексов. После химической обработки катушки в мокром виде устанавливают на прядильной машине. Ровница проходит через корыто с водой и попадает в вытяжной прибор, который, вытягивая, одновременно дробит технические волокна на элементарные, формируя пряжу уже из тонких волокон.

Вытягивание является основным технологическим процессом при выработке льняной пряжи способом мокрого прядения. Оно заключается в утонении ровницы в вытяжном приборе прядильной машины за счет смещений элементарных волокон и их комплексов. Поэтому наиважнейшее значение при мокром способе прядения имеет процесс разделения технических льняных волокон на элементарные. Наибольшее влияние на процесс утонения ровницы в вытяжном приборе прядильной машины оказывает прочность льняных волокон в мокром состоянии, то есть степень их мацерации. Мацерационной способностью принято называть способность технических льняных волокон к разделению в мокром состоянии.

В настоящее время существует ряд исследований, которые выявили положительный эффект от применения ультразвука при мокром прядении льна. Авторы исследования [1] пришли к выводу, что наличие ультразвукового воздействия на ровницу в процессе мокрого прядения льна позволяет вырабатывать более прочную и равномерную по свойствам пряжу, а применение ультразвуковых колебаний делает возможным производство более тонкой пряжи при прочих равных условиях. В работах [2] и [4] также подтверждается, что использование УЗ в процессе прядения способствует улучшению качества пряжи при одновременном снижении энергозатрат на ее производство.

Основываясь на полученных сведениях и с учетом того, что наибольший эффект достигается при воздействии УЗ на ровницу в водной среде [1], [3], [6] предлагается разработать метод интенсификации мацерации льняного волокна при мокром способе прядения за счет воздействия ультразвукового излучения. Повышение степени мацерации льняных волокон позволит улучшить ход технологического процесса, повысить качество пряжи и ее внешний вид.

Для выяснения влияния ультразвука на степень мацерации льняных волокон проведено экспериментальное исследование. Основу применяемой лабораторной установки составила ультразвуковая ванна модели «Сапфир-1,3/2 ТТЦ (РМД)», со встроенными в днище двумя пьезоэлектрическими преобразователями. Пьезоэлемент, являющийся основным генератором ультразвуковых колебаний, работает при потребляемой мощности 100 Вт. Объем ванны 1,3 литра, рабочая частота 35 кГц. Ванна оснащена регулируемым нагревателем (15–70 °C) и таймером (1–99 мин.).

Методика проведения исследований процесса повышения степени мацерации льняных волокон с использованием ультразвукового излучения состояла из нескольких этапов. Предварительно подготовленные образцы льняной ровницы погружались в ультразвуковую ванну наполненную водой с температурой 40°С. Ровница подвергалась ультразвуковому воздействию, основой которого являлась кавитация — образование в жидкости пульсирующих пузырьков, заполненных паром, газом или их смесью [6]. Время обработки было выбрано управляемым фактором и составляло от 20 до 100 с., с интервалом варьирования 20 с. На каждом уровне фактора проводилось 25 повторений. Также была проведена серия опытов базовым способом — без применения ультразвука.

Для обработанных таким образом прядок льняной ровницы определялась величина разрывной нагрузки на машине РМ-3-1. Результаты, полученные в ходе эксперимента, показали, что при отсутствии ультразвукового воздействия величина среднего значения разрывной нагрузки составила Р1=62,15 даН (при этом дисперсия D1=195,76), при воздействии ультразвука с потребляемой мощность 100 Вт — Р2=79,78 даН (при этом дисперсия составила 232,94). Значения основных физико-механических показателей обработанной ровницы приведены в таблице 1.

Таблица 1 – Физико-механические свойства льняной ровницы после обработки с

применением ультразвука и базовым способом (без УЗ).

Показатель	Значение	
	Обработка с ультразвуковым воздействием	Обработка без ультразвукового воздействия
Разрывная нагрузка	79,78	62,15
Дисперсия	232,94	195,76
Среднеквадратичное отклонение	15,26	13,99
Коэффициент вариации	19 %	23 %

В результате проведённых экспериментов была установлена зависимость между временем обработки и значением разрывной нагрузки для случая с применением ультразвукового излучения и для базового случая, с отсутствием ультразвукового излучения (рис.1).

Анализ рисунка 1 позволяет сделать вывод, что применение ультразвукового воздействия оказывает влияние на значение разрывной нагрузки, причем максимальные значения разрывной нагрузки достигнуты при воздействии ультразвука на ровницу в течение 60 с. Снижение разрывной нагрузки при дальнейшем увеличении времени обработки можно объяснить разрушением льняных волокон под действием ультразвукового излучения в течение длительного периода.

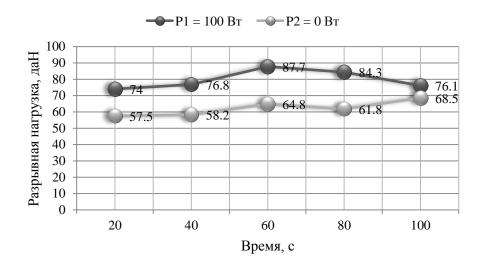


Рисунок 1 — Зависимость между временем обработки и значением разрывной нагрузки, Р1 — при воздействии на ровницу ультразвука и Р2 — при отсутствии ультразвукового воздействия

Таким образом, после проведения экспериментов можно говорить о положительном влиянии ультразвуковых колебаний на прочность льняной ровницы. На этом основании можно сделать выводы о целесообразности применения ультразвукового воздействия на льняные волокна с целью повышения степени мацерации и прочности.

Список использованных источников

- 1. Сергеев, К. В., Жуков, В. И. К вопросу об ультразвуковом воздействии как факторе интенсификации мацерационной способности волокна при мокром способе прядения льна // Изв. вузов. Технология текстильной промышленности. 2011, № 5.
- 2. Гольдшмидт, В. Г. Исследование влияния применения упругих колебаний, генерируемых в жидкой среде в корыте прядильной машины, на качество льняной пряжи и силы, действующей в вытяжном поле: Дис.... канд. техн. наук. Кострома, 1967.
- 3. Титова, У. Ю., Сергеев, К. В., Воеводин, П. Н. Повышение мацерационной

УО «ВГТУ», 2018 3**05**

- способности льняного волокна с помощью ультразвука // Научн. тр. молодых ученых КГТУ. 2010. № 11. С. 32...36
- 4. Гребенкин, А. Н. Взаимосвязь структуры, свойств и технологии диспергирования лубоволокнистого сырья в ультразвуковых и гидродинамических полях: Дис....докт. техн. наук. СПб., 2003.
- 5. Сергеев, К. В., Жуков, В. И. Использование ультразвука в процессе получения льняной пряжи мокрым способом // Вестник Костромского государственного технологического университета. 2011, №2(27). С. 20...22.
- 6. Хмелев, В. Н. Применение ультразвука высокой интенсивности в промышленности / В. Н. Хмелев, А. Н. Сливин, Р. В. Барсуков, С. Н. Цыганок, А. В. Шалунов; Алт. гос. техн. ун-т, БТИ. Бийск: Изд-во Алт. гос. техн. ун-та, 2010. 203 с.

4.9Аддитивные технологии

УДК 004.925.84: 655.222.343

ОБЗОР АДДИТИВНЫХ ТЕХНОЛОГИЙ ДЛЯ РЕШЕНИЯ ИНЖЕНЕРНЫХ ЗАДАЧ

Савицкий В.В., доц., Голубев А.Н., ст.преп., Быковский Д.И., маг.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье выполнен обзор современных аддитивных технологий, в том числе технологий 3D-печати, находящих применение для решения инженерных задач. Рассмотрены вопросы терминологии и классификации аддитивных технологий. Выявлены технологии, получившие наибольшее распространение в машиностроительных отраслях.

<u>Ключевые слова:</u> аддитивные технологии, 3D-печать, модельные материалы, послойное добавление материала, методы фиксации материала.

Аддитивные технологии (Additive Manufacturing, AM) — новаторская технологическая концепция, активно разрабатываемая во всех высокоразвитых странах со второй половины XX века. Принцип заключается в том, что изделие создается при помощи послойного добавления материала различными способами, например, наплавлением или напылением порошка, жидкого полимера, композитного материала [1].

Вопрос терминологии рассматривался в рамках деятельности организации ASTM International (American Society for Testing and Materials), занимающейся разработкой технических стандартов для широкого спектра материалов, изделий, систем и услуг. В стандарте ASTM F2792.1549323-1 [2] аддитивные технологии определены как «process of joining materials to make objects from 3D model data, usually layer upon layer, asopposed to subtractive manufacturing technologies» («процесс объединения материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий»). Под «вычитающими» технологиями подразумевается механообработка – удаление («вычитание») материала из массива заготовки. Таким образом, сообщество американских инженеров прибегло к понятию (subtractive) «вычитание», чтобы определить новое понятие (additive) «добавление», т. е. в самом определении «аддитивные технологии» трактуются как противоположность технологиям механообработки. Но не все технологии соединения материала, а только те, которые создают объект по данным 3D-модели или из САD-данных, т. е. на основе трёхмерной компьютерной модели. Это второе ключевое слово - CAD. Третье ключевое слово здесь -«послойно».

Рекомендованы два основных термина – Additive Manufacturing (AM), Additive Fabrication (AF), а также равнозначные по смыслу – Additive Processes, Additive Techniques, Additive Layer Manufacturing, Layer Manufacturing и Freeform Fabrication. Все они могут быть переведены как «аддитивные технологии», их также можно называть технологиями послойного синтеза.