МЕТОДИКА ТЕПЛОВОГО РАСЧЕТА ОБОРУДОВАНИЯ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ

Котов А.А., асс., Дрюков В.В., к.т.н., доц., Кузьменков С.М., асс.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат</u>. В статье представлена методика проведения расчета тепловых потерь оборудования для термической обработки текстильных материалов с целью оценки его энергоэффективности.

Ключевые слова: тепловой расчет, термостабилизация, синтетическое полотно.

Актуальным на данный момент является создание оптимальной конструкции установки для термостабилизации полотна из синтетических нитей.

Установка состоит из нагревательного модуля и системы транспортировки обрабатываемого полотна. Стенка корпуса нагревательного модуля изготовлена из листовой стали. Полотно потягивается вдоль рабочей поверхности модуля при помощи транспортирующих роликов. Прижатие полотна к рабочей поверхности осуществляется прижимными роликами и слоем лакоткани. Для уменьшения потерь тепла нерабочие поверхности нагревательного модуля покрыты слоем тепловой изоляции из арселона (толщина слоя $\delta=50~\text{мм}=0.05~\text{м}$, коэффициент теплопроводности $\lambda=0.06~\text{Bm/m·град}$, степень черноты $\varepsilon=0.94$).

Возможно два конструктивных исполнения данной установки: с верхним или нижним расположением рабочей поверхности нагревательного модуля. Ниже приводится методика теплового расчета, необходимого для выбора более энергоэффективного варианта.

Количество тепла, затрачиваемое на нагрев полотна, может быть определено по формуле

$$Q_{H} = m \cdot c \cdot \Delta t \,, \tag{1}$$

где m – массовый расход материала, ka/cek; c – теплоемкость материала, Δt – изменение температуры материала. В свою очередь, массовый расход материала определяется как

$$m = \upsilon \cdot \omega \cdot \rho$$
, (2)

где v — скорость протягивания материала, ω — площадь поперечного сечения слоя материала, ρ — плотность материала.

При определении потерь тепла с поверхности нагревательного модуля необходимо учитывать как конвективный, так и лучистый теплообмен. Поскольку интенсивность теплоотдачи зависит от температуры рассматриваемой поверхности, определить которую заранее невозможно, расчет проводится методом последовательного приближения до максимального совпадения принимаемой предварительно температуры с получаемой в результате вычислений.

Потери тепла излучением Q_n рассчитываются в соответствии с законом Стефана-Больцмана [1]:

$$Q_{n} = \varepsilon \cdot C_{0} \cdot F \cdot \left(\left(\frac{T_{cm}}{100} \right)^{4} - \left(\frac{T_{cm}}{100} \right)^{4} \right), \tag{3}$$

где ε – степень черноты поверхности тела, C_0 = 5,67 $Bm/m^2 \cdot epad^4$ – коэффициент излучения абсолютно черного тела, F – площадь поверхности тела, T_{cm} и T_{cm} – средние абсолютные температуры поверхности тела и окружающей среды соответственно.

При расчете конвективных потерь тепла Q_{κ} применяется уравнение Ньютона-Рихмана

$$Q_{\kappa} = \alpha_{\kappa} \cdot F \cdot (t_{cm} - t_{cm}), \tag{4}$$

УО «ВГТУ», 2018 **297**

где α_{κ} – коэффициент теплоотдачи конвекцией. Для нахождения значения коэффициента теплоотдачи конвекцией необходимо использовать критериальные уравнения. При этом для определения потерь тепла с боковых поверхностей нагревательного модуля при $10^3 < (Gr \cdot Pr) < 10^9$ критериальное уравнение будет иметь вид [1]

$$Nu = 0.75 \cdot (Gr \cdot Pr)^{0.25}; \tag{5}$$

для основных поверхностей нагревательного модуля при $2\cdot 10^7 < (Gr\cdot Pr) < 10^{13}$ рекомендуется использовать следующие критериальные уравнения [2]: при нижнем расположении поверхности

$$Nu = 0.0945 \cdot (Gr \cdot Pr)^{0.33}, \tag{6}$$

при верхнем расположении поверхности

$$Nu = 0.1755 \cdot (Gr \cdot Pr)^{0.33}. \tag{7}$$

В этих уравнениях: Nu – число Нуссельта,

$$Nu = \frac{\alpha_{\kappa} \cdot l}{\lambda_{w}}; \tag{8}$$

Gr – критерий Грасгофа,

$$Gr = \frac{l^3}{V_{\text{ac}}^2} \cdot \beta \cdot g \cdot \Delta t \; ; \tag{9}$$

Pr – критерий Прандтля.

Здесь l — определяющий размер тела, $\lambda_{\mathcal{H}}$ — коэффициент теплопроводности окружающей среды, $\nu_{\mathcal{H}}$ — коэффициент объемного температурного расширения окружающей среды, g = 9,81 $\textit{м/cek}^2$ — ускорение свободного падения, $\Delta t = |t_{cm} - t_{\mathcal{H}}|$ — температурный напор между поверхностью тела и окружающей средой. Значения физических параметров среды ($\lambda_{\mathcal{H}}$, $\nu_{\mathcal{H}}$, $\nu_{\mathcal{H}}$, $\nu_{\mathcal{H}}$) определяются по таблице параметров воздуха [3] в зависимости от определяющей температуры.

При расчете тепловых потерь с боковой поверхности нагревательного модуля в качестве определяющего размера принимается его высота (l=h), в качестве определяющей температуры – средняя температура окружающей среды t_{∞} .

При расчете потерь тепла с основных поверхностей рабочего модуля в качестве определяющего размера принимается наименьший из размеров поверхности – ее длина (l=L'), в качестве определяющей температуры – средняя температура пограничного слоя t_{cp} .

Потери тепла при верхнем расположении рабочей поверхности нагревательного модуля определяются: с рабочей поверхности Q_p – согласно формулам (3), (4), (7) – (9), с обратной поверхности Q_o – согласно формулам (3), (4), (6), (8), (9); при нижнем расположении рабочей поверхности нагревательного модуля: с рабочей поверхности Q_p – согласно формулам (3), (4), (6), (8), (9), с обратной поверхности Q_o – согласно формулам (3), (4), (7) – (9).

Общая потребляемая мощность нагревательного модуля определяется как

$$Q = Q_{H} + 2 \cdot Q_{\tilde{0}} + Q_{p} + Q_{o}. \tag{10}$$

Проведенный согласно разработанной методике расчет позволяет сделать вывод, что замена традиционного верхнего расположения рабочей поверхности нагревательного модуля установки для термофиксации полотна из синтетических волокон на нижнее является предпочтительным с точки зрения энергоэффективности и позволяет сократить

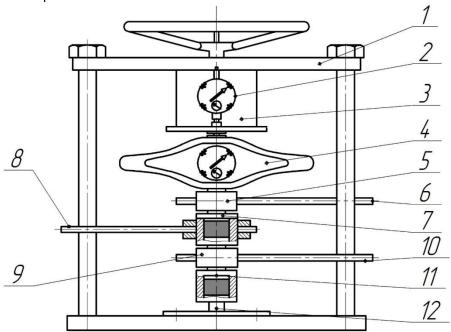
энергопотребление более чем на 4 %.

Список использованных источников

- 1. Исаченко, В. П., Осипова, В. А., Сукомел, А. С. Теплопередача. М.: Энергия, 1969. 440 с.
- 2. Романенко, П. Н., Обливин, А. Н., Семенов, Ю. П. Теплопередача. М.: Лесная промышленность, 1969. 432 с.
- 3. Нащокин, В. В. Техническая термодинамика и теплопередача. М.: Высшая школа, 1975. 496 с.

УДК 621.762

ТРИБОМЕТР ДЛЯ ИССЛЕДОВАНИЯ СЖИМАЕМЫХ СРЕД


Пятов В.В., проф., Голубев А.Н., ст. преп., Павленко В.Н., асп.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Реферат. В статье описан трибометр, позволяющий измерять триботехнические характеристики любых измельченных материалов. Трибометр позволяет измерять коэффициенты внешнего и внутреннего трения пластичных материалов в направлении прессования и на боковых поверхностях прессформ, коэффициенты бокового давления, а также исследовать зависимость касательных напряжений от нормальных на поверхности трения и внутри материала. Кроме того, он позволяет исследовать уплотняемость материалов при различных напряженных состояниях.

<u>Ключевые слова:</u> трибометр, триботехнические характеристики, сжимаемые среды, трение, уплотняемость.

Конструкция прибора признана изобретением [1]. Схема трибометра представлена на рисунке. Прибор смонтирован совместно с винтовым прессом 1, на котором закреплен индикатор 2, предназначенный для измерения перемещений ползуна 3. Усилие от ползуна через динамометр 4 передается на верхний пуансон 5 прибора, зафиксированный от проворота стержнем 6. Верхняя матрица 7 может поворачиваться при измерениях с помощью рычага 8. Средний пуансон 9 выполнен двухсторонним и тоже установлен с возможностью поворота, усилие для которого прикладывается через рычаг 10. Нижняя матрица 11 сопряжена со средним и нижним 12 пуансонами; последний неподвижно закреплен на плите пресса. Прибор снабжен комплектом матриц и пуансонов с гладкими и рифлеными поверхностями.

УО «ВГТУ», 2018 **299**