быстрое обнаружение в момент надевания. Отсутствие свободных концов хлястика спереди самоспасателя при надевании и последующее застегивание их на ленту велкро создает удобство и безопасность в момент использования самоспасателя.

В области лба самоспасателя между боковыми швами размещены две горизонтальные светоотражающие полосы, а по центру передней панели, исключая область зрения, – вертикальная полоса. Наличие светоотражающих полос позволяет сделать пользователя более заметным спереди и сбоку в условиях повышенной задымленности.

Достаточный объем пространства в волосистой части головы и глаз способствует удобству пользования самоспасателем для людей с очками, с объемными прическами (косами, бантами и т.п.).

Разработанный самоспасатель обладает герметичностью за счет плотности прилегания в нижней части головы и стабильности посадки, а также герметизации всех швов универсальным самоклеющимся пленочным материалом с внутренней стороны. Швы самоспасателя обладают достаточной прочностью в продольном и поперечном направлениях в соответствии с требованиями нормативно-технической документации.

Огнестойкость самоспасателя обеспечивается комбинированным применением огнестойких тканей, пленочных материалов, фильтрующих нетканых материалов. Важной составляющей разработки является мобильность самоспасателя в сложенном виде [7]. Предлагается способ складывания самоспасателя путем скручивания боковых сторон с последующим вкладыванием их в подмасочник. Это обеспечит компактность при хранении.

Список использованных источников

- 1. Брушлинский, Н. Н. О статистике пожаров и пожарных рисках / Н. Н. Брушлинский, С .В. Соколов // Пожаровзрывобезопасность. 2011. Т. 20. № 4. С. 40–48.
- 2. Коваленко, Е. И. Антропометрическое исследование лица и головы и обоснование параметров для проектирования конструкции самоспасателя. / Е. И.Коваленко, О. В. Метелева, М. В. Сурикова // Известия вузов. Технология легк. пром-сти.— С-ПбУТД. 2012. Т. 15. № 1. С. 51—55.
- 3. Сурикова, М. В. Экспериментальное определение параметров иллюминатора самоспасателя / М. В. Сурикова, О. В. Метелёва, Е. И. Коваленко // Известия вузов. Технология текст. пром-сти. 2013. № 1. С. 113–116.
- 4. Пат. № 4382 Республика Беларусь, МПК А 62 В 15/00, А 62 В 17/00. Защитный капюшон / Астахов В.С.; Коробейникова А.; Подплетнева Г.В.; Астахов А.С.; Астахов А.М. (РФ); патентообладатель: Закрытое акционерное общество "Северо-Западный научно-технический центр "Портативные средства индивидуальной защиты" имени А.А. Гуняева" (РФ). № 20070724, заявл. 17. 10.2007 опубл. 30. 06.2008. 8 с.
- 5. Пат. 2523998 Российская Федерация, МПК А 62 В 18/02. Головной гарнитур респиратора со складывающимся головным креплением / Кастиглионе Д.М. (США), Миттелстадт У.А. (США), Холмквист-Браун Т.В. (США); патентообладатель: ЗМ Инновейтив Пропертиз Компани (США). № 2012137181/12; заявл. 02.03.2011; опубл. 20.04.2014, Бюл. № 21.
- 6. Пат. 2289461 Российская Федерация, МПК А 62 В 18/00, А 62 В 17/00. Устройство защитное дыхательное / Фатхутдинов Р.Х. и др.; патентообладатель: ОАО "КазХимНИИ" (РФ). № 2005101191/12, заявл. 19.01.2005; опубл. 20.12.2006, Бюл. № 35
- 7. Метелева, О. В. Разработка рекомендаций по применению материалов при изготовлении самоспасателя / О. В. Метелева, М. В. Сурикова, С. В. Леппяковская // Известия вузов. Технология текст. пром-сти. 2016. № 6 (366). С. 166—172.

УДК 677.017

ИССЛЕДОВАНИЕ СВОЙСТВ МАТЕРИАЛОВ ВЕРХА СПЕЦИАЛЬНОЙ ОДЕЖДЫ ДЛЯ ЗАЩИТЫ ОТ ПОНИЖЕННЫХ ТЕМПЕРАТУР

Панкевич Д.К., доц., Домбровская Е.А., студ.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Реферат. В статье рассматриваются результаты исследования эксплуатационных

УО «ВГТУ», 2018 **155**

свойств материалов верха, предназначенных для изготовления специальной одежды, защищающей от пониженных температур, с позиции соответствия требованиям нового стандарта.

<u>Ключевые слова:</u> одежда специальная, эксплуатационные свойства, водозащитное полимерное покрытие, стандарт, подтверждение соответствия.

Работа на открытом воздухе в зимний период года сопряжена с рядом трудностей, поэтому спецодежда должна обеспечивать надёжную защиту от холода и высокий комфорт в процессе носки. Проектирование комфортной теплозащитной спецодежды, обеспечивающей тепловое равновесие организма и защиту от внешних неблагоприятных факторов, представляет собой сложную задачу. В такой одежде должна сочетаться невысокая масса и высокие теплозащитные свойства, водонепроницаемость, малая воздухопроницаемость и достаточная паропроницаемость, необходимая для обеспечения влагообмена человека с окружающей средой. В связи с этим большое значение приобретает проектирование спецодежды с необходимой теплоизоляцией за счет оптимального выбора пакета материалов [1].

Эксплуатационные свойства материалов верха для специальной одежды обеспечивают соответствие требованиям, обусловленным конкретными условиями эксплуатации: влияние атмосферных осадков, температуры и скорости движения воздуха, продолжительность и метаболический уровень работы.

Согласно ГОСТ 12.4.303-2016, введенному в действие на территории Республики Беларусь в сентябре 2017 года, материалы с полимерным покрытием, используемые для изготовления одежды специальной для защиты от пониженных температур, обязательно должны отвечать ряду требований к значениям следующих показателей свойств: раздирающая нагрузка, воздухопроницаемость, паропроницаемость, водоотталкивание. К эксплуатационным свойствам материалов верха, значения показателей которых рекомендуется обеспечивать в заданных пределах, относятся следующие: прочность при растяжении; водопроницаемость и её изменение после стирок, морозостойкость [2].

Целью работы является исследование эксплуатационных свойств материалов для специальной одежды, защищающей от пониженных температур и оценка соответствия материалов требованиям ГОСТ 12.4.303-2016.

Характеристика объектов исследования представлена в таблице 1. Изучению подвергались свойства материалов с водозащитными покрытиями производства ОАО «Моготекс», Республика Беларусь (образцы 1–5) и «Нірога», Республика Корея (образцы 6 и 7). При изготовлении всех исследуемых материалов применялись полиэфирные текстильные основы. Водозащитные покрытия получены тремя различными способами: ПлПУМ — пленочное полиуретановое микропористое покрытие и ПлА2 — пленочное акрилатное покрытие, выработанные наносным способом; ПлЛАМ — ламинирование текстильной основы готовой полимерной полиуретановой мембраной клеевым переносным способом.

Таблица 1 – Характеристика объектов исследования

- raominga i	rapanteprotina ee benteb reestedebatiin						
Номер образца	Вид покрытия (полимер)	Поверхностная плотность, г/м ²	Переплетение				
Образец 1	ПлПУМ (ПУ гидрофобный)	133	Полотняное				
Образец 2	ПлПУМ (ПУ гидрофобный)	118	Полотняное				
Образец 3	ПлА2 (полиакрилат гидрофобный)	146	Полотняное				
Образец 4	ПлЛАМ (ПУ гидрофильный)	185	Комбинированное				
Образец 5	ПлПУМ (ПУ гидрофильный)	197	Саржевое				
Образец 6	ПлЛАМ (ПУ гидрофильный)	126	Комбинированное				
Образец 7	ПлЛАМ (ПУ гидрофильный)	131	Комбинированное				

Определение показателей свойств материалов выполнялось в соответствии с требованиями следующих стандартных методов: разрывной и раздирающей нагрузок – по ГОСТ 3813-72; водоотталкивания – по ГОСТ 28486-90, водопроницаемости – по ГОСТ 12.4.263-2014 (метод Б 1), паропроницаемости – по ГОСТ 22900-78, воздухопроницаемости – по ГОСТ 12088-77.

Все испытания проводились в лаборатории сектора испытаний Центра испытаний и сертификации продукции УО «ВГТУ» на поверенном оборудовании. Статистическая обработка полученных данных проводилась в соответствии с известными методиками. Достоверность полученных результатов оценивалась показателями среднеквадратического отклонения и относительной ошибки опыта при доверительной вероятности Р = 0,95. Результаты испытаний представлены в таблице 2.

Таблица 2 – Результаты испытаний

таолица 2 – Результаты испытании										
Наименование показателя, единицы	Значение показателей по образцам						Норма- тивное			
измерения	1	2	3	4	5	6	7	значение		
Обязательные для контроля показатели свойств										
Воздухопроницаемость, $дм^3/(m^2 \cdot c)$	6	2	0	0	0	0	0	не более 40		
Водоотталкивание,										
условные единицы:								не менее		
-до стирок	90	100	70	90	80	100	100	90		
-после 5 стирок	70	80	60	70	60	90	90	80		
Раздирающая нагрузка, Н:								не менее		
- по основе	44,5	58,2	25,2	62,0	36,5	36,2	39,4	30		
- по утку	32,8	50,0	18,7	55	26,0	28,7	29,3	20		
Паропроницаемость,								не менее		
мг/(см ² ·ч)	4,0	3,5	0,8	5,0	4,2	6,2	5,8	4,0		
Рекомендуемые для контроля показатели свойств										
Разрывная нагрузка										
полоски ткани размером										
50x200 мм, H:								не менее		
- по основе	870	920	900	1280	1321	995	1010	600		
- по утку	730	690	680	1140	1415	876	942	400		
Водопроницаемость, Па	4100	5700	3400	7900	1500	8100	8300	не менее 8000		

Анализ данных таблицы 2, отражающих результаты испытаний по обязательным для контроля показателям свойств, позволяет сделать вывод, что образцы 1, 3, 4 и 5 не соответствуют ГОСТ 12.4.303-2014 по показателю водоотталкивания, образцы 2 и 3 — по показателю паропроницаемости. Таким образом, соответствие требованиям стандарта [2] можно констатировать только для образцов 6 и 7. При анализе рекомендуемых значений показателей эксплуатационных свойств выявлено, что образцы 6 и 7 отвечают указанным требованиям по всем показателям и обеспечивают уровень водопроницаемости, соответствующий рекомендациям стандарта. Эти образцы выбраны для продолжения исследования по определению показателей морозостойкости и способности сохранять уровень водопроницаемости после многократных стирок, диапазон значений которых также является рекомендуемым. Описание эксперимента и оценка его результатов являются темой следующей работы.

Список использованных источников

- 1. Бузов, Б. А. Исследование материалов для одежды в условиях пониженных температур (методы и средства) / Б. А. Бузов, А. В. Никитин. Москва : Легпромбытиздат, 1985. 224 с.
- 2. ГОСТ 12.4.303—2016. Система стандартов безопасности труда. Одежда специальная для защиты от пониженных температур. Технические требования. Введ. 01.09.2017. Москва: ИПК Издательство стандартов, 1995. 36 с.

УО «ВГТУ», 2018 **157**