# Глава 21. ВЫСОКИЕ ОБРАТИМЫЕ НЕУПРУГИЕ ДЕФОРМАЦИИ ПРИ ПЛАСТИЧЕСКОМ ДЕФОРМИРОВАНИИ НИКЕЛИДА ТИТАНА Лотков А.И., Гришков В.Н., Батурин А.А.

Институт физики прочности и материаловедения СО РАН, г. Томск, Россия, E-mail: lotkov@ispms.tsc.ru

### Введение

Наиболее важным функциональным свойством сплавов на основе никелида титана является способность накапливать и возвращать большие обратимые неупругие деформации (ОНД) при проявлении эффектов памяти формы (ЭПФ) и сверхэластичности (СЭ), в основе которых лежат прямые и обратные термоупругие мартенситные превращений (МП) из кубической В2 фазы в ромбоэдрическую R и моноклинную В19` мартенситные фазы при охлаждении и нагреве образцов, соответственно или под действием внешнего приложенного напряжения. Максимально возможную величину проявления ОНД в сплавах с МП оценивают из сравнения достигнутого её уровня с кристаллографическим ресурсом мартенситной деформации (КРМД), определяемым из соотношения параметров кристаллических решёток исходной и мартенситных фаз (деформации сжатия – растяжения при МП) [1,2]. КРМД зависит от состава сплава, ориентации монокристаллических и текстуры поликристаллических образцов и ряда других факторов (в частности, присутствия дефектов кристаллической структуры) [3]. В [1] показано, что при МП В2↔R КРМД мал (0,95%). Наиболее значимы ОНД при МП В2↔В19` и R↔B19`. Концентрационная зависимость КРМД для двойных сплавов на основе TiNi представлена в [3]: максимальное значение характерно для эквиатомного TiNi (11,8%) и уменьшается до ~10% при содержании атомов Ni в сплаве до 51 ат.%. В последние годы показана возможность получения аномально высоких ОНД, превышающих КРМД в двойных сплавах на основе TiNi.

Аномально высокие ОНД (14-17%) получены в двойных сплавах с 50 и 50,7 ат.% Ni (наносубзеренная и микрокристаллическая структуры [4-7], в сплаве с 50,9 ат.% Ni микрокристаллические структуры) [ 8,9 и в сплаве с 50,8 ат.% Ni (нано-И (крупнозернистая и микрокристаллические структуры) [ 10,11] при изгибе 4-9 и 8-11<sup>]</sup> образцов. Механизм и физическая природа этого эффекта при кручении пока не выяснены. Поэтому исследования условий проявления аномально высоких ОНД в сплавах на основе никелида титана являются актуальными; эти исследования представляют как научную, так и практическую значимость.

Цель данной работы – представить закономерности проявления максимальных ОНД в двойных сплавах на основе никелида титана с различной зёренной МΠ, микроструктурой, испытывающих различные последовательности при пластическом деформировании образцов кручением и изгибом. В соответствии с этим представлены результаты исследований на модельных сплавах, микроструктура которых менялась от крупнозернистой до микрокристаллической (сплав Ti<sub>49.8</sub>Ni<sub>50.2</sub>,at.%) и от нанокристаллической до микрокристаллической (сплав Ti<sub>49.1</sub>Ni<sub>50.9</sub>, ат.%) и которые испытывали как МП B2↔R↔B19`, так и МП B2↔B19`, Выбор сплава Ті₄ҙѧNi₅о₂ (ат.%) обусловлен тем, что в [12,13] показано, что по мере увеличения истинной деформации при тёплом авс-прессовании его микроструктура эффективно трансформируется от крупнозернистой до микрокристаллической, а фазовый состав сплава при этом не меняется. Выбор сплава Ті<sub>49.1</sub>Nі<sub>50.9</sub> (ат.%) обусловлен тем, что его исходная нанокристаллическая структура легко трансформируется рекристаллизационными отжигами в монофазную микрокристаллическую структуру при температурах существования гомогенной В2 фазы и последующей фиксацией её при комнатной температуре закалкой в воде; такая обработка приводит к изменению последовательности МП от В2↔ R↔B19` к В2↔B19` [2,3,14].

#### Материалы и методика эксперимента

Сплавы Ti<sub>49.8</sub>Ni<sub>50.2</sub> (ат.%) в виде стержня Ø30 мм и Ti<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%) в виде проволоки (Ø 1,1.мм) были поставлены промышленным центром «МАТЕК-СПФ» (г. Москва). После высокотемпературной формовки образцов (кубики со стороной 19 мм) структура сплава Ті<sub>49.8</sub>Ni<sub>50.2</sub> (ат.%) крупнозернистая (средний размер зерен 23 мкм при средней их неравноосности 1,4). Образцы испытывали МП В2-> R при охлаждении ниже  $T_R$  = 328К, а в интервале температур от  $M_H$  = 317К до  $M_K$  = 270К протекало МП R—B19<sup>7</sup>. При последующем нагреве от A<sub>H</sub> = 343K до A<sub>K</sub> = 354K реализовалось только МП В19\_B2. Изотермическое тёплое многоцикловое abcпрессование проводили в прессформе при температурах 723К и 573К. При 723К были изготовлены образцы с последовательным увеличением е от 0,29 до 8,44. После прессования с е = 8,44 средний размер зерен равен 1,5 мкм. При 573К образцам методом abc- прессования была задана деформация с е равной 1,84, 3,60, 5,40. и 7,43. Средний размер зерен <d>=1 мкм после прессования с e=7,43. Образцы сплава Ti<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%) в исходном состоянии после вытяжки проволоки имели нанокристаллическую структуру со средним размером зёрен-субзёрен <d>=86 нм. Образцы данного сплава с микрокристаллической структурой получены отжигами при 973К с последующей закалкой в воде: после максимальной длительности отжига, равной 40 минутам, средний размер зёрен <d>=11 мкм. Исходные образцы с нанокристаллической структурой испытывали при охлаждении И нагреве последовательность МП В2↔ R↔ B19`. В образцах с микрокристаллической структурой (<d>=2 мкм уже после отжига длительностью 10 минут при 973 К) при охлаждении и нагреве реализовалось только МП В2↔В19`. Последовательность и температуры МП определяли по температурным зависимостям электросопротивления образцов. Неупругие и пластические деформации при кручении образцов изучали на установке типа обратного крутильного маятника с рабочим интервалом температур от 150К до 570К. Деформацию кручения определяли равной <sup>γ</sup> = arctg(Кф) где К – отношение радиуса к рабочей длине образцов,  $\phi$  – угол закручивания. В изотермических (295К) циклах «нагружение-разгрузка» определяли величину СЭ (у св.); при последующем нагреве разгруженных образцов – величину возврата неупругой деформации, обусловленную реализацией однократного ЭПФ (у эпф), а остаточную деформацию завершения формовосстановления принимали после равной накопленной пластической деформации (у пл. фиксировали при 493К). Суммарная неупругая деформация (СНД) соответствовала сумме неупругих деформаций при реализации СЭ и ЭПФ ( $\gamma_{CHZ} = \gamma_{CB.} + \gamma_{\Theta \Pi \Phi}$ ). Заданная в изотермических (295К) циклах деформация  $\gamma_{t}$ последовательно увеличивалась вплоть до разрушения образцов или потери устойчивости их формы. Исследования развития неупругих и пластической деформаций в исходных образцах сплава Ті<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) с нанокристаллической структурой и образцах с микрокристаллической структурой (<d>=4,7 и 11 мкм после отжигов при 973К длительностью 20,30 и 40 минут, соответственно) были проведены как при деформировании кручением, так и изгибом. Изотермические (295 К) циклы

как при деформировании кручением, так и изгиоом. Изотермические (295 К) циклы «нагружения-разгрузки» при изгибе образцов проводили в форме с V-образным каналом (угол между стенками 90<sup>0</sup>) нагружением цилиндрами заданного радиуса. Как и при кручении, в изотермических циклах «нагружение-разгрузка» определяли величину СЭ ( $\epsilon_{CB}$ ), при последующем нагреве разгруженных образцов – возврат неупругой деформации, обусловленный реализацией однократного ЭПФ (( $\epsilon_{ЭПФ}$ ), а остаточную деформацию после его завершения принимали равной накопленной пластической деформации ( $\epsilon_{rp}$  фиксировали при 493К). Методика определения соответствующих неупругих и пластической деформаций растяжения на внешней поверхности изгибаемых образцов приведена в [8].

# Результаты и их обсуждение

Влияние тёплого *abc*-прессования на последовательность и температуры МП в образцах сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) приведено на рисунке 1.



Рисунок 1 – Зависимости температур МП от заданной деформации е при тёплом abспрессовании образцов сплава Ті<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%): а – прессование при 723К [15], б – прессование при 573К. Т<sub>R</sub> – температура МП В2→R; М<sub>н</sub> и М<sub>к</sub> – температуры начала и завершения МП R→B19` при охлаждении; А<sub>н</sub> и А<sub>к</sub> – температуры начала и завершения МП В19`→B2 при нагреве

Из рисунка 1 видно, что последовательность МП при охлаждении и нагреве образцов в результате прессования при 723К и 573К не меняется по сравнению с исходной: B2→ R→ B19→ B2. При этом после прессования при 723К температура начала МП B2→R и температуры начала и завершения обратного МП B19′→B2 при

нагреве не меняются. Температуры начала и завершения МП- № В19́ понижаются ~ на 10 градусов. После прессования с е до 7,43 при 573К температура Т<sub>R</sub> остается такой же, как в исходных образцах и в образцах после прессования при 723К. Однако понижение температуры тёплого прессования более заметно влияет на температуру начала МП в структуру В19́ (при увеличении е М<sub>Н</sub> понижается на — 20 градусов).

Температура завершения МП R В19 понижается ещё более существенно – на 30 градусов. После прессования с е от 1,84 до 7,43 интервал температур обратного МП В19'  $\rightarrow$  В2 уширяется вследствие понижения  $A_H$  и повышения  $A_K$ , причем  $A_H$  и  $A_K$  при всех е до 7,43 остаются ниже температур обратного МП в исходных образцах и образцах после прессования при 723К. Заметное понижение температур МП R →B19́ после тёплого прессования при 573К обусловлено, наиболее вероятно, более интенсивным накоплением дефектов кристаллического строения (в частности, дислокаций), чем в процессе деформирования при 723К, при которой в процессе структуры более вероятно формирования развитие процессов возврата. Следовательно, при сравнимых величинах заданной пластической деформации после abc-прессования при 573К образцы будут иметь более высокое упрочнение, чем после при 723К. Это подтверждается зависимостями «напряжениепрессования деформация» (т-)), полученными в процессе кручения при Т<sub>д</sub>=295К после тёплого деформирования при 723К и 573К, рисунок 2.



образцов сплава Ті<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) после тёплого аbс-прессования при 723К (а) и 573К (б): 1 – исходные образцы; 2 и 3 – после прессования с е = 1,82 и е = 8,44; 4 и 5 – после прессования с е =1,84 и е = 7,43. Тд=295К

Все эти зависимости имеют качественно подобный вид и включают начальную квазиупругую стадию, площадку псевдотекучести (переориентация и раздвойникование исходного мартенсита В19<sup>′</sup>и допревращение остаточной R фазы в мартенсит В́19, так каік T<sub>d</sub> M<sub>K</sub>), линейную стадию деформационного упрочнения, переходящую в стадию интенсивного пластического течения при дальнейшем нагружении. Из рисунка 2 следует, что увеличение истинной деформации, задаваемой в процессе *abc*- прессования как при 723K, так и при 573K, приводит к существенному упрочнению образцов. Сравнение рисунков 2а и рисунок 2б показывает, что напряжение, соответствующее развитию примерно одинаковых деформаций <sup>γ</sup> в процессе кручения при 295K, для образцов, деформированных при 523K, на 200-250 МПа выше, чем для образцов после прессования при 723K.

Анализ накопления и возврата ОНД и пластической деформации в изотермических (295К) циклах «т-у» с возрастающей величиной заданной деформации кручения <sup>ү</sup> t в каждом цикле и при промежуточных нагревах разгруженных образцов показал, что проявления СЭ, ЭПФ, СНД и развитие пластической деформации пл. в исходных образцах и образцах после тёплого abc-прессования как при 573К, так и при 723К качественно подобны (зависилиости жв., эпф, снд и пл. от получены для всех образцов), рисунок 3. Из рисунка 3 видно, что ОНД, возвращаемые при проявлении СЭ, ЭПФ и суммарная неупругая деформация снд при увеличении <sup>ү</sup> , увеличиваются, достигают максимальных значений, а затем наблюдается их плавное уменьшение. При этом экспериментально полученные слабо изменяются максимальные значения сэ, эпф И снд в результате трансформации структуры от крупнозернистой до микрокристаллической при увеличении истинной деформации, заданной в процессах тёплого abc-прессования при 723К и 573К, таблица 1.



Рисунок 3 – Зависимости <sub>усв.</sub>, <sub>уэпф</sub>, <sub>уснд</sub> и <sub>улл.</sub> от заданной деформации <sup>у</sup> <sub>t</sub> при кручении исходных крупнозернистых образцов (а) и образцов после тёплого*аbс*-прессования: б – при 723К с *e* = 8,44 [16]; в – при 573К с *e* = 3,60. Сплав Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%)

Таблица 1 – Максимальные значенияγ<sub>CB.</sub>, μ<sub>ΠΦ</sub> и <sub>С/нд</sub>, полученные при кручении образцов сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) с исходной структурой и структурами после *abc*-прессования при 723К и 573К (достигаются при разных <sub>γ</sub>)

| Температура<br>abc-<br>прессования | e                   | ε <sub>t</sub> (11,8%), % | <sub>γ</sub> (11,8%), % | ε <sub>пл.</sub><br>(11,8%),<br>% | үпл.<br>(11,8%),<br>% |
|------------------------------------|---------------------|---------------------------|-------------------------|-----------------------------------|-----------------------|
| 723K                               | Исходные<br>образцы | 18,5                      | 28,6                    | 6,7                               | 11,2                  |
|                                    | 0,29                | 23,8                      | 35,4                    | 12,0                              | 19,4                  |
|                                    | 0,62                | 25,2                      | 37,1                    | 13.4                              | 21,4                  |
|                                    | 1,82                | 20,0                      | 30,6                    | 8,2                               | 13,6                  |
|                                    | 4,15                | 19,2                      | 29,6                    | 7,4                               | 12,3                  |
|                                    | 6,44                | 17,5                      | 27,2                    | 5,7                               | 9,6                   |
|                                    | 8,44                | 18.3                      | 28,3                    | 6,5                               | 10,9                  |
| 523K                               | Исходные<br>образцы | 18,5                      | 28,6                    | 6,7                               | 11,2                  |
|                                    | 1,84                | 16,7                      | 26,1                    | 4,9                               | 8,3                   |
|                                    | 3,60                | 18,1                      | 28.0                    | 6,3                               | 16,5                  |
|                                    | 5,40                | 16,7                      | 26,2                    | 4,9                               | 8,3                   |
|                                    | 7,43                | 17,8                      | 27,6                    | 6,0                               | 10.1                  |

Деформации кручения  $\gamma_{t}$ , при которых достигаются максимальные значения  $\gamma_{B,r}$ ,  $\gamma_{\Theta \Pi \Phi}$  и  $\gamma_{CHD}$ , отличаются, но в целом локализованы на стадии развития интенсивной пластической деформации, следующей за стадией деформационного упрочнения образцов, таблица 2 и рисунок 2. Из таблицы 2 следует, что высокие значения  $\gamma_{CB,r}$ ,  $\gamma_{\Theta \Pi \Phi}$  и  $\gamma_{CHD}$  наблюдаются в широких интервалах заданных деформаций  $\gamma_{t}$  и соответствующих им интервалах пластической деформации. При этом максимальные значения  $\gamma_{\Theta \Pi \Phi}$ , полученные в исследуемых образцах, достигают 11-12%.

Таблица 2 – Интервал заданной деформации кручения (уt) и соответствующих пластических деформаций (упл.), в которых уснд составляет 97% от максимальной суммарной неупругой деформации для образцов двойного сплава с 50,2 ат.% Ni после*аbc*-прессования с деформацией е при 723К и 573К

| Температура<br><i>аbс</i> -<br>прессования | е                | Max. <sub>үснд</sub> , % | Интервал<br><sub>ү</sub> , % | Интервал<br><sub>үпл.</sub> , % |
|--------------------------------------------|------------------|--------------------------|------------------------------|---------------------------------|
| 723К                                       | Исходные образцы | 18,0                     | 37-50                        | 19-32                           |
|                                            | 0,29             | 15,9                     | 27-44                        | 13-29                           |
|                                            | 0,62             | 15,8                     | 27-48                        | 13-32                           |
|                                            | 1,82             | 17,2                     | 27-44                        | 10-27                           |
|                                            | 4,15             | 17,2                     | 30-47                        | 13-30                           |
|                                            | 6,44             | 18,2                     | 33-46                        | 15-28                           |
|                                            | 8,44             | 18,3                     | 33-48                        | 16-30                           |
| 523K                                       | Исходные образцы | 18,0                     | 37-50                        | 19-32                           |
|                                            | 1,84             | 18,8                     | 28,5-42,5                    | 10,3-24,3                       |
|                                            | 3,60             | 18,2                     | 29,0-43,8                    | 11,4-26,1                       |
|                                            | 5,40             | 18,5                     | 30,4-39,8                    | 12,2-26,7                       |
|                                            | 7,43             | 18,6                     | 30,8-43,4                    | 12,8-28,3                       |

Однако, прямое сравнение экспериментальных обратимых неупругих деформаций, полученных при кручении, и аналогичных деформаций, полученных при растяжении-сжатии (в том числе с кристаллографическим ресурсом мартенситной деформации (КРМД), рассчитываемым как деформации растяжения-сжатия кристаллической решетки исходной фазы при МП), некорректно в силу существенно разных схем деформирования и определения деформаций в каждой из них. Вместе с тем, основываясь на представлениях [17] об эквивалентных деформациях при разных схемах нагружения (истинная деформация, в частности, по Мизесу), в [8] представлен алгоритм, позволяющий сравнить достигаемые ОНД при деформировании кручением с известными значениями КРМД сплавов на основе TiNi [3] и с ОНД, полученными при растяжении аналогичных сплавов.

Истинная деформация при растяжении ( $e_p$ ) определяется из выражения  $e_p = ln(1+\epsilon)$ , где  $\epsilon$  – удлинение при растяжении. При кручении истинная деформация  $e_\kappa = S/\sqrt{3}$ , где относительный сдвиг S = tg, q – деформация кручения. Используя выражения для  $e_p$  и  $e_\kappa$ , трансформируем t  $\mathfrak{E}_{t,\gamma}$  пл. в  $\epsilon_{\Pi,\Lambda}$ ,  $\gamma$  в  $\epsilon_{\Gamma}$  где  $r_{\overline{T}}$  уп $\phi + \gamma_{\Pi,\Lambda}$  и соответствует остаточной деформации после изотермического нагружения и разгрузки. Затем рассчитываются ОНД при растяжении, эквивалентные соответствующим ОНД при кручении:  $\epsilon_{CB} = \mathfrak{E} - \epsilon_{T}$ ,  $\epsilon_{\Theta\Pi\phi} = \mathfrak{E} - \mathfrak{E}_{0,\pi}$ ,  $\epsilon_{\Theta\Pi\phi} = \mathfrak{E} - \mathfrak{E}_{0,\pi}$ .

Все экспериментальные зависимости ΟΤ γ были Q/В., ЭΠΦ, И ΜЛ. СНД преобразованы в эквивалентные им зависимостие Св., ЕПФ, СНД И ВЛ ОТ с, которые имели качественно подобный вид, аналогичный представленным на рис. 9 зависимостям для исходного крупнозернистого образца и образца после abcпрессования при 723К с е=8,44. Зависимости ε<sub>снд</sub> и ε<sub>пл.</sub> от ε<sub>t</sub>, полученные по приведенному выше алгоритму, позволяют оценить ε<sub>t</sub> и ε<sub>пл.</sub> (и, соответственно, γγ и пл.), при которых ε<sub>снд</sub> достигает КРМД, максимум которого составляет для исследуемого фплава 11,8% 3. Результаты проведенной оценки представлены на рисунке 4 и в таблице 3.



Рисунок 4 – Перерасчет (по Мизесу) экспериментальных зависимостей  $\chi_{B.}$ ,  $\chi_{B\Pi\Phi}$ ,  $\chi_{HJ}$  и  $\gamma_{II.}$  от  $\gamma$ , рис. За и рис. Зб, полученных при кручении исходных крупнозернистых образцови образцов после тёплого (723К) *аbc*-прессования с *e* = 8,44 на зависимости  $\chi_{B.}$ ,  $\chi_{B\Pi\Phi}$ ,  $\chi_{CHJ}$  и  $\chi_{II.}$  при растяжении этих же образцов (рис. За и Зб, соответственно). Сплав Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%)

| Таблица 3 – Критические деформации є (11,8%), єпл. (11,8%) и эквивалентные им деформации                                         |
|----------------------------------------------------------------------------------------------------------------------------------|
| кручения <sup>ү</sup> t (11,8%), <sup>ү</sup> пл.(11,8%), при которых достигается ε <sub>СНД</sub> =КРМД=11,8% в образцах сплава |
| Ті <sub>498</sub> Nі <sub>502</sub> (ат.%) после тёплого <i>аbс</i> -прессования при 723К и 573К                                 |

| Температура | е        | ε <sub>t</sub> (11,8%), % | ¥ (11,8%), % | εпл.(11,8%), | γ⊓л.(11,8%), |
|-------------|----------|---------------------------|--------------|--------------|--------------|
| abc-        |          |                           |              | %            | %            |
| прессования |          |                           |              |              |              |
| 723K        | Исходные | 18,5                      | 28,6         | 6,7          | 11,2         |
|             | образцы  |                           |              |              |              |
|             | 0,29     | 23,8                      | 35,4         | 12,0         | 19,4         |
|             | 0,62     | 25,2                      | 37,1         | 13.4         | 21,4         |
|             | 1,82     | 20,0                      | 30,6         | 8,2          | 13,6         |
|             | 4,15     | 19,2                      | 29,6         | 7,4          | 12,3         |
|             | 6,44     | 17,5                      | 27,2         | 5,7          | 9,6          |
|             | 8,44     | 18.3                      | 28,3         | 6,5          | 10,9         |
| 523K        | Исходные | 18,5                      | 28,6         | 6,7          | 11,2         |
|             | образцы  |                           |              |              |              |
|             | 1,84     | 16,7                      | 26,1         | 4,9          | 8,3          |
|             | 3,60     | 18,1                      | 28.0         | 6,3          | 16,5         |
|             | 5,40     | 16,7                      | 26,2         | 4,9          | 8,3          |
|             | 7,43     | 17,8                      | 27,6         | 6,0          | 10.1         |

Из приведенных данных следует, что в образцах после *abc*-прессования с е ≥ 1,8 как при 723К, так и при 523К КРМД достигается при достаточно умеренных заданных деформациях ε<sub>t</sub> (от 26% до 30%), которые локализованы в начале стадии развития интенсивного пластического течения, предшествующей их разрушению, рисунок 2. Из рисунка 5а видно, что в образцах после изотермического прессования при 723К с *е* ≤ 1,82 (в частности, с е =0,29 и е =0,62, когда структура остается крупнозернистой) достигается КРМД, равный 11,8%, при более высоких γ<sub>t</sub> (и, соответственно, эквивалентных им  $\varepsilon_t$ , таблица 3), чем после прессования с  $e \ge 1,82$ . Это связано, в основном, с более интенсивным накоплением пластической деформации, а <sub>снд</sub> (11,8%) уменьшается при этом незначительно. В настоящее время не установлено, наблюдается ли подобная немонотонность изменения Зависимостей Υ<sub>t</sub> (11,8%) и п.(11,8%) от е после воздействия малых тёплых деформаций при 573К.

Из сопоставления рисунков 4 и рисунков 5 следует, что при кручении всех образцов с  $\gamma \gg \gamma(11,8\%)$ , приведенных на рисунке 5 и соответствующих достижению КРМД, прирост суммарной ОНД ( снд и эквивалентной ей  $\epsilon_{CHD}$ ) при увеличении  $\gamma_t$  (и, соответственно,  $\epsilon_t$ ) замедляется, при этом  $\epsilon_{CHD}$  существенно превышает КРМД. На рис. 6 представлены экспериментальные значения снд, полученные при кручении с  $\gamma_t$  =52% ( $\epsilon_t$ =39,2%), и соответствующие им значения  $\epsilon_{CHD}$  в зависимости от заданной пластической деформации при 723К и 573К. Из рисунка 6 видно, что при кручении с t=52% (эквивалентная  $\epsilon_t$ =39,2%) в исходных образцах и образцах после прессования при 723К с  $e^{\gamma}$  от 4,15 до 8,44 снд (18% и 17,7%, соответственно) незначительно? ( 0,6%) отличается от снд (11,8), соответствующей КРМД сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%), рисунок 5, и максимальных значений снд, приведенных в таблице 1.

После деформирования при 723К с *e*=0,29  $\chi_{CHZ}$  максимальна (14.7%), а соответствующее ей максимальное значение  $\epsilon_{CHZ}$  составляет 13,8%, превышая КРМД на ~2%. При увеличении *e* до 4,15  $\div$  8,44 суммарная ОНД увеличивается до 16,6%, превышая КРМД на 4,2% (зависимости 3 и 4 на рисунке 6).



Рисунок 5 – Заданная деформация у и составляющие ее вклады уснд и улл., при которых в процессе изотермического (295К) кручения и последующего нагрева разгруженных образцов достигается КРМД (сенд=КРМД=11,8% [3]), в зависимости от величины истинной деформации (е) при тёплом изотермическом *abc*-прессовании (а – при 723К, б – при 573К) образцов сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%)



Рисунок 6 – Суммарная неупругая деформация ( <sub>Жнд</sub>), при кручении до<sup>у</sup> <sub>t</sub> = 52,0% и эквивалентная ей суммарная неупругая деформация при растяжении ( <sub>Снд</sub> – расчет по Мизесу) в зависимости от истинной деформации (е) образцов сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) после тёплого *abc*-прессования при 573К (1 и 2, соответственно) и 723К (3 и 4, соответственно)

Подобные зависимости <sub>Уснд</sub> и є<sub>снд</sub> от е наблюдаются и после *abc*-прессования при 573К (зависимости 1 и 2 на рис. 6). Отличие заключается в том, что наблюдаются

менее значимые уменьшения <sub>ұснд</sub> и є<sub>снд</sub> (до 16,3% и 15,3%, соответственно) при увеличении е до 3,6, а при увеличении е от 3,6 до 7,43 <sub>ұснд</sub> и є<sub>снд</sub> возрастают до 17,5% и 16%, соответственно, как и после прессования при 723К.

Таким образом, наиболее значимый результат проведенных исследований развития неупругих и пластических деформаций при кручении образцов сплава Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) заключается в следующем. Экспериментально показано, что при кручении как в исходных крупнозернистых образцах, так и при трансформации их структуры в микрокристаллическую в результате тёплого *abc*-прессования при 573К и 723К достигнутый уровень суммарной ОНД превышает КРМД от 2% до 4,2% (в зависимости от заданной пластической деформации при тёплом прессовании и заданной деформации кручением  $\gamma$ ). При этом КРМД и максимальные суммарные ОНД наблюдаются при кручении образцов в условиях одновременного развития пластической деформации.

Качественно подобные результаты получены и при исследовании неупругих и пластической деформации в образцах сплава Ti<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%) с нанокристаллической и микрокристаллической структурами при увеличении заданных деформаций в аналогичных изотермических (295K) циклах «нагружение-разгрузка» при деформировании как кручением, так и изгибом с последующим нагревом разгруженных образцов. В отличие от сплава Ti49.8Ni50.2 (ат.%) сплав Ti49.1Ni50.9 (ат.%) является стареющим, в котором в процессе отжигов при температурах ниже 780-800 К формируются выделения фазы Ti<sub>3</sub>Ni<sub>4</sub>, способствующие появлению R-фазы [1,2]. Однако после отжигов при более высоких температурах (в частности, и при температуре 973 К) образцы сплава Ті<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%) имеют структуру гомогенной В2 фазы. Кроме того, отжиги этих образцов при 973К позволяют сформировать микрокристаллическую структуру, близкую к микрокристаллической структуре образцов сплава Ті<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) после тёплого авс-прессования с истинной деформацией 4-6 Зависимость размеров зёрен в образцах сплава Ti<sub>49.8</sub>Ni<sub>50.2</sub> (ат.%) от [12,15]. длительности отжига при 973 К приведена на рисунке 7 по данным оптической металлографии и растровой электронной микроскопии. После отжига длительностью 10 минут в образцах выявляются только отдельные наиболее крупные зёрна размером 2-5 мкм. В образцах, отожжённых в течение 15 минут отчётливо видна микрокристаллическая структура с <d>=2мкм, а размер наиболее крупныз зёрен достигает 6 мкм. При увеличении длительности отжига до 40 минут <d> возрастает до 11,4 мкм, а доля наиболее крупных зёрен составляет ~ 6%, что обусловлено, вероятно, более высокой скоростью роста зёрен определённых ориентаций.



Рисунок 7 – Размеры наиболее крупных зёрен (1) и средний размер зёрен (2) в зависимости от длительности отжига при 973К образцов сплава Ti<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) [9]

Отжиги при температуре, соответствующей существованию гомогенной В2 фазы в сплаве Ti<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%), привёли к закономерному для обогащенных никелем сплавов на основе TiNi изменению последовательности и температур МП. После отжигов при 973К длительностью до 15 минут происходит изменение последовательности МП от R←B19' ←B2 (в исходных образцах) к B2→B19', рисунок 8. Температуры начала и завершения МП B2→B19' при охлаждении (М<sub>н</sub> и M<sub>к</sub>, соответственно) и обратного превращения B19'→B2 при нагреве (А<sub>н</sub> и A<sub>к</sub>, соответственно) при этом повышаются и остаются практически неизменными при увеличении времени отжига от 20 до 40 минут. Из рисунка 8 видно, что как исходные, так и рекристаллизованные образцы при 295К имели структуру B2 фазы до начала изотермического нагружения при исследованиях развития неупругой и пластической деформаций в процессах изгиба и кручения.



Рисунок 8 – Температуры МП в зависимости от длительности отжига при 973 К образцов сплава Ті<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) [9]

Стадийность развития деформации в процессе изотермического (295К) нагружения при изучении исходных и рекристаллизованных образцов (на 40, 50 и 30 градусов выше T<sub>R</sub>, M<sub>H</sub> и A<sub>K</sub>, соответственно) приведена на рисунке 9 и качественно подобна развития деформации при кручении образцов стадиям сплава Ті<sub>49.8</sub>Ni<sub>50.2</sub> (ат.%), рисунок 2. При достижении напряжения мартенситного сдвига (<sub>тм</sub>~410 МПа и ~350 МПа в исходных и рекристаллизованных образцах, соответственно) псевдотекучести, обусловленная наблюдается площадка протеканием инициированного напряжением МП в мартенсит В19' и переходящая в стадию деформационного упрочнения, с последующим развитием интенсивного пластического течения.



Рисунок 9 – Инженерные зависимости «напряжение-деформация» при кручении образцов сплава Ті<sub>49,1</sub>Ni<sub>50,9</sub>(ат.%) с исходной структурой (1) и после отжигов при 973 К в течение 20 минут (2) и 30 минут (3) [16]. Тд=295 К

Напряжение начала последней стадии деформирования понижается от 910 МПа в исходных образцах до 630 и 530 МПа в образцах, отожжённых в течение 20 и 30 минут, соответственно. Таким образом, переход от нанокристаллической структуры к микрокристаллической структуре образцов обусловливает их разупрочнение, а одновременное повышение температур МП, рисунок 8, приводит к уменьшению т<sub>м</sub>, необходимого для генерации в процессе нагружения при 295К мартенсита В19', обеспечивающего последующее проявление СЭ и ЭПФ.

В изотермических (295К) циклах «нагружение-разгрузка» при деформировании изгибом с последующим нагревом разгруженных образцов до 493К выявляются все составляющие заданной при нагружении деформации:  $\xi = \xi_{CHD} + \xi_{n} = \xi_{CHD} + \xi_{DT\Phi} + \xi_{DT\Phi} + \xi_{DT}$ Для исходных и рекристаллизованных образцов ЕСНД, ЕСВ И ЕЭПФ В ЗАВИСИМОСТИ ОТ заданной деформации изгиба <sup>є</sup> т представлены на рисунке 10, а на рисунке 11 - соответствующие зависимости развития пластической деформации в пл Конструктивные особенности установки для изгиба позволяют проводить испытания ≤ t 30%. Из рисунков 10 и 11 видно, что для всех видов образиюв є образцов при зависимости сно, св, эпо и пл имеют качественно подобный вид: сно и СВ достигают максимальных значений, а затем – уменьшаются; ЭПФ И пл возрастают вплоть до <sup>є</sup> t = 27%. Развитие пластической деформации при изгибе образцов, коррелирует с обнаруженным ранее их рисунок 11, разупрочнением мосле рекристаллизационных отжигов (зависимости «а - » на рисунке 9). Из рисунка 11 видно, что накопление пл при изгибе отожженных образцов начинается при заметно меньших  $\varepsilon_t$  (4-6%),  $\varepsilon_{ee}$  в исходны  $\pounds$  образцах с $\varepsilon \leq$ 

нанокристаллической структурой ( t 10%), причем пл при всех t 27% тем больше, чем больше продолжительность рекристаллизационного отжига. Ускоренное развитие

пл при  $\epsilon^{\epsilon}$  t 10-14% обусловливает уменьшение <sub>св</sub> во всех образцах, увеличение доли деформационного мартенсита В19' и, соответственно, увеличение возврата неупругой деформации <sub>ЭПФ</sub> при нагреве разгруженных образцов, рисунки 10 и 12. Вместе с тем, независимо от изменения соотношения св  $\epsilon^{\epsilon}$ и <sub>ЭПФ</sub>, рост <sub>СНD</sub> продолжается до  $\epsilon^{\epsilon}$ достижения максимальных былчений <sub>СнD</sub>(max), которые наблюдаются вблизи t=20% в исходных образцах и t=22 24% в рекристаллизованных образцах, рисунок 10.



Рисунок 10 – Зависимости <sub>СНД, св</sub>, <sub>ЭПФ</sub> от заданной деформации при изгибе образцов сплава Ti<sub>49,1</sub>Ni<sub>50,9</sub>(ат.%) (T<sub>д</sub>=295 K): *а* – в исходном состоянии (0) и после отжига при 973 К в течение 20 минут (20); *б* – отжиг при 973 К в течение 30 минут (30) и 40 минут (40) [9]

При увеличении длительности рекристаллизационного отжига до 40 минут ε <sub>CHD</sub>(max) уменьшается до 13,5% от 16,5% в исходных образцах, рисунок 12. Таким образом, независимо от последовательности МП в ненагруженных образцах (B2→ R→ B19' в исходных образцах с нанокристаллической структурой и B2↔B19' в рекристаллизованных образцах с микрокристаллической структурой) в циклах изотермического нагружения и разгрузки при деформировании изгибом с последующим нагревом разгруженных образцов є <sub>CHD</sub>(max) превышает на 3-7 % КРМД данного сплава, равного, согласно [3], 10,3% для монокристаллов и 9,6% для поликристаллов.







Рисунок 12 – Влияние длительности отжига при 973К образцов сплава Ті<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) на максимальную величину суммарной неупругой деформации (ε<sub>СНД</sub>(max) достигается при ε<sub>t</sub> от 20 до 24 %) и ε<sub>СНД</sub>, ε<sub>св</sub>, ε<sub>ЭПФ</sub> при заданной деформации изгиба ε<sub>t</sub>=20% [9]

Качественно подобные результаты получены при деформировании кручением исходных и рекристаллизованных при 973К образцов сплава Ті<sub>491</sub>Ni<sub>509</sub> (ат.%), рисунки 13 и 14. Экспериментальные схемы при кручении и изгибе были идентичны. Из рисунков 13а и 14а видно, что при увеличении 👔 заданной при 295К в процессе изотермического нагружения, происходит изменение соотношения и уэпо подобно тому, как это происходит при изгибе, рисунок 10. В рекристаллизованных образцах происходит более интенсивное, чем в исходных образцах, развитие пластической значения уснд соответственно, достигаемые деформации γіл, и. И Усв в рекристаллизованных образцах на 2-3% меньше, чем в исходных. При этом максимальная обратимая неупругая деформация сед(max) составляет 25% образцах с исходной нанокристаллической структурой и уменьшается до 22% после отжига в течение 20 мин. при 973К, а максимальные значения усв – 20% и 17,5%, соответственно, рисунки 13а и 14а.



Рисунок 13 – Неупругие деформации <sub>УСНД</sub>, <sub>Усв</sub>, <sub>УЭПФ</sub> и пластическая деформация <sub>Угр</sub> в зависимости от заданной при 295К деформации кручения <sub>Уt</sub>(а) и соответствующие им эквивалентные деформации растяжения, полученные перерасчетом по алгоритму [8] (б) для образцов сплава Ti<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) в исходном состоянии [8]



Рисунок 14 – Неупругие деформации <sub>Уснд</sub>, <sub>Усв</sub>, <sub>Уэпф</sub> и пластическая деформация <sub>Угр</sub> в зависимости от заданной при 295К деформации кручения <sub>Уt</sub>(а) и соответствующие им эквивалентные деформации растяжения, полученные перерасчетом по алгоритму [8], для образцов сплава Ti<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) после отжига при 973К в течение 20 мин [8]

Полученные при этом зависимости  $\epsilon_{CHD}$ ,  $\epsilon_{cb}$ ,  $\epsilon_{B\Pi\Phi}$ , и  $\epsilon_{nn}$  от  $\epsilon_t$ , эквивалентные экспериментальным зависимостям уснд, ув, эпо и пу от у, представлены на рисунках 13б и 14б. Из анализа рисунков 13б, 14б и 10 следует, что до<sub>Еt</sub>, соответствующих ев (max) и енр (max) на рисунке 10а, различие значений есь и ссно при изгибе и ссв и ссно, эквивалентных соответствующим деформациям <sub>усв</sub> и <sub>GHд</sub> при кручении, рисунки 13б и 14б, не превосходит 0,6%. При более высоких t, рисунок 10а, при которых <sub>св</sub> и<sub>ссно</sub> уменьшаются при изгибе (эквивалентные деформации <sup>є</sup> т при кручении более 22% деформации и 31%, соответственно), эти неупругие при кручении исходных, продолжают возрастать как в И рекристаллизованных так В образцах сплава Ti<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%), достигая практически равных значений ( <sub>св</sub> 16,5%, ε<sub>t</sub> 69% (эквивалентная деформация сно до 24-25%) при t=74%). а Это обусловлено тем, чтос> при заданных деформациях t 14% ( t 22%)> для  $(\gamma > t$ рекристаллизованных образцов и t 20% 31,6%) для исходных образцов накопление пластической деформации при изгибе происходит более интенсивно, чем при кручении (из сопоставления пл на рис. 11, 136,

14б). Таким образом, при деформировании кручением как в исходных, так и в рекристаллизованных образцах достигаются существенно более высокие неупругие деформации  $\varepsilon_{CB}$  и  $\varepsilon_{CHD}$ , чем при изгибе. При этом  $\varepsilon_{CHD}$  достигает значений в ~2 раза превосходящих КРМД, а  $\varepsilon_{CB}$  превосходит КРМД на ~ 6% как в образцах с исходной нанокристаллической структурой, так и в рекристаллизованных образцах с микрокристаллической структурой.

образцов Эти наиболее высокие значения сяд при кручении сплава Ті<sub>49,1</sub>Nі<sub>50,9</sub> (ат.%) достигаются в условиях развития существенно более высоких пластических деформаций, чем при изгибе: 80 нр. превышающая при кручении КРМД на 15% достигается при пл 244% в исходных образцах С нанокристаллической структурой, при спл. 42% в отожженных образцах с микрокристаллической структурой, а при изгибе <sub>сснд</sub>(max) наблюдается при <sub>спл</sub> 6% и 9%, соответственно. Наиболее вероятная причина подобного различия влияния пластической деформации при изгибе кручении на проявления неупругих деформаций может быть связана с И доминированием различных механизмов ее развития. В частности, преимущественное развитие интенсивных внутризёренных деформационных процессов приводит, повидимому, к ускоренному подавлению механизмов, обусловливающих проявление аномально высокой неупругой деформации (при изгибе). Это коррелирует с заметным уменьшением достигаемых неупругих деформаций по мере укрупнения зёренной структуры при увеличении рекристаллизационного отжига до 40 минут (d<sub>cp</sub>=11 мкм и 6% зёрен размером от 20 до 27 мкм), рисунки 10 и 12. Вместе с тем, в образцах с нанокристаллической и микрокристаллической структурой и более равноосной формой зёрен (после отжигов при 973К меньшей длительности) важным фактором может быть реализация зернограничного проскальзывания в процессе деформирования, при котором развитие деформационных процессов в объёмах зёрен происходит существенно менее интенсивно и которое развивается более активно при кручении. Но для подтверждения этого предположения необходима постановка специальных исследований, которые находятся пока на начальной стадии развития.

В целом, результаты исследований сплава Ті<sub>49.1</sub>Ni<sub>50.9</sub> (ат.%) показали, что как в исходных образцах с нанокристаллической структурой и последовательностью МП B2←R ←В19', так и в отожжённых образцах с микрокристаллической структурой и последовательностью МП В2↔В19′ в идентичных изотермических (295К) циклах «нагружение-разгрузка» при изгибе и кручении с последующим нагревом разгруженных образцов достигаются высокие неупругие деформации, максимум которых составляет 14-16,5% при изгибе и 24-25% при кручении, и которые превышают КРМД, равный При этом пластические 10.3% (согласно [3]). деформации образцов при соответствующих заданных деформациях составляют 4-8% при изгибе и 42-44% при кручении (эквивалентные пластические деформации при кручении составляют 55-57%, соответственно).

Вместе с тем, физические факторы, обусловливающие проявления аномально высоких ОНД, превышающих КРМД, до настоящего времени не выявлены. Наиболее вероятными считаются следующие предположения: 1- дополнительное двойникование монодоменизированного мартенсита B19' И 2-реализация дополнительного превращения в фазе В19' при воздействии нагрузки, как это происходит, например, в сплавах Cu-Al-Ni, В которых при ДВVХ последовательных МΠ величина сверхэластичности достигает 17% [18]. Однако, рентгеноструктурные исследования образцов сплава с 50,2 ат.% Ni после растяжения, проведенные в нашей работе, и электронномикроскопические исследования образцов сплава Ti<sub>49.4</sub>Ni<sub>50.6</sub>(ат.%) после деформирования растяжением [4] не выявили наличия фаз со структурой отличной от В2, R или В19'. Возможно, что новый тип двойникования в В19' или дополнительное МП являются высокообратимыми, и новые структуры испытывают обратные переходы в исходную фазу при разгрузке. При этом особенности (типа появления площадки псевдотекучести) на зависимостях о-є или ту могут и не возникать. Таким образом, для выявления причин проявления аномально высоких неупругих эффектов в сплавах

на основе TiNi необходимо развитие структурных исследований "insitu" при нагружении образцов.

## Заключение

1. Установлено, что тёплое abc-прессование при 723К и 573К с истинной деформацией до 8,44 и 7,43, соответственно, не влияет на последовательность мартенситных превращений при охлаждении и нагреве образцов (B2→R↔B19') и температуру превращения B2→R. После прессования при 723К не изменяются и температуры МП R ⟨B19' B2. Понижение температуры прессования до 523К приводит к понижению на ~20 градусов температур МП R→B19` и B19`→B2. Различие в отмеченных результатах обусловлено более интенсивным развитием процессов возврата в условиях прессования при 723К, что коррелирует с более высоким упрочнением образцов после прессования при 523К, чем образцов после прессования при 793К.

2Показано, что рекристаллизионный отжиг при 973К приводит к тому, что нанокристаллическая структура исходных образцов трансформируется в микрокристаллическую структуру. В результате рекристаллизации наблюдается разупрочнение образцов; смена последовательности МП от B2↔R↔B19` к B2↔B19`; повышение температур МП B2↔B19` на начальной стадии отжига (до 15 мин.) и их неизменность при увеличении длительности отжига до 40 мин.; уменьшение напряжения мартенситного сдвига при 295К.

3. Показано, что при кручении в изотермическуих циклах «нагружениеразгрузка»и последующем нагреве как образцов сплава  $Ti_{49,8}Ni_{50,2}$  (ат.%) с исходной крупнозернистой структурой и микрокристаллическими структурами, полученными при тёплом авс-прессовании, так и образцов сплава  $Ti_{49,1}Ni_{50,9}$  (ат.%) с исходной нанокристаллической структурой и микрокристаллическими структурами, полученными рекристаллизационными отжигами при 973К, в процессе последовательной реализации эффектов сверхэластичности и памяти формы достигается аномально высокая суммарная обратимая неупругая деформация: превышение КРМД составляет от 2 до 4,5% для образцов сплава  $Ti_{49,8}Ni_{50,2}$  (ат.%) и в ~ 2 раза для образцов сплава  $Ti_{49,1}Ni_{50,9}$  (ат.%). При изгибе образцов сплава  $Ti_{49,8}Ni_{50,2}$  (ат.%) с указанными выше микроструктурами по аналогичному термодеформационному режиму достигнутое превышение КРМД составляет от 4 до 6%.

4. Полученные результаты показывают, что высокие значения обратимой неупругой деформации достигаются при изгибе и кручении как образцов с последовательностью МП В2↔R↔B19`, так и образцов с последовательностью МП В2↔B19`.

5 Показано, что максимальные значения суммарной обратимой неупругой деформации, превышающей КРМД, при кручении и изгибе по использованному в работе термодеформационному режиму образцов сплавов Ti<sub>49,8</sub>Ni<sub>50,2</sub> (ат.%) и Ti<sub>49,1</sub>Ni<sub>50,9</sub> (ат.%) достигаются при одновременном развитии пластической деформации, величина которой может составлять от 10 до 50%.

Авторы признательны к.ф.-м.н. Жаповой Д.Ю. и к.т.н. Тимкину В.Н. за помощь, оказанную ими при подготовке данной главы. Работа выполнена при финансовой поддержке Программы фундаментальных исследований Государственных Академий наук на 2013-2020 гг. III.23.2 (проект III.23.2.2.) и Комплексной программы фундаментальных исследований СО РАН № II.2П «Интеграция и развитие» на 2017 год. Пункт III.23 (Проект II.2П/III.23-1.).

# Список литературы:

1. Ооцука, К. Сплавы с эффектом памяти формы. / К. Ооцука, К. Симидзу, Ю. Судзуки, Ю. Сэкигути, Ц. Тадаки, С. Миядзаки. Перевод с яп.. – М: Металлургия, 1990.-224 с.

2. Сплавы никелида титана с памятью формы. Ч.1. Структура, фазовые превращения и свойства./Под ред.В.Г. Пушина.– Екатеринбург:УрО РАН, 2006 - 439 с.

3. Прокошкин, С.Д. Кристаллическая решётка мартенсита и ресурс обратимой деформации термически и термомеханически обработанных сплавов Ti-Ni с памятью

формы / С.Д. Прокошкин, А.В. Коротицкий, В. Браиловский и др. // ФММ. - 2011. -Т.112. - №2. - С.180-198.

4. Рыклина, Е.П. Особенности реализации аномально высоких эффектов памяти формы в термомеханически обработанных сплавах Ті-Ni / Е.П. Рыклина, С.Д. Прокошкин, А.А. Чернавина // Материаловедение. - 2012. - №11.- С-23-30.

5. Рыклина, Е.П. Возможности достижения аномально высоких параметров ЭПФ сплава Ті-50.7 ат.% Ni в различных структурных состояниях аустенита / Е.П. Рыклина, С.Д. Прокошкин, А.Ю. Крейцберг // Изв. РАН. Серияфизическая. - 2013. - Т.77. - №11. - С.1653-1663.

6. Pushin, V.G. Nanostructured Ti-Ni – based shape memory alloys processed by severe plastic deformation / V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, T.C. Lowe, Y.T. Zhu // Mater. Sci. Eng. A. - 2005. - V.410-411. - P.306-389.

7. Ryklina, E.P. Abnormally high recovery strain in Ti-Ni-based shape memory alloys / E.P. Ryklina, S.D. Prokoshkin, A.Yu. Kreitsberg // J. Alloys and Compounds. - 2013. - V.577S. - P.S255-S258.

8. Grishkov V.N. Comparative analysis of inelastic strain recovery and plastic deformation in a  $Ti_{49.1}Ni_{50.9}$  (at.%) alloy under torsion and bending / V.N. Grishkov, A.I. Lotkov, A.A. Baturin, V.N. Timkin, D.Yu. Zhapova // AIP Conf. Proc. - 2015. - V.1683. - 020067.

9. Grishkov, V.N. Effect of recrystallization annealing on the inelastic properties of TiNi alloy under bending / V.N. Grishkov, A.I. Lotkov, A.A. Baturin, A.G. Cherniavsky, V.N. Timkin, D.Yu. Zhapova // AIP Conf. Proc. - 2016. - V.1783. - 020067; doi: 10.1063/1.4966360.

10. Lotkov, A. Temperature dependence of inelastic strain recovery in TiNi-based alloys under torsion / Lotkov A., Grishkov V., Zhapova D., Baturin A., Timkin V. // AIP Conf. Proc. - 2015. - V.1683. - 020125; doi: 10.1063/1.4932815.

11. Lotkov, A. Effect of warm rolling on the martensite transformation temperatures, shape memory effect and superelasticity in  $Ti_{49.2}$  Ni<sub>50.8</sub> alloy / A. Lotkov, D. Zhapova, V. Grishkov, A. Cherniavsky, V. Timkin // AIPConf. Proc. - 2016. - V.1783. – 020137.

12. Лотков, А.И. Формирование ультрамелкозернистого состояния, мартенситные превращения и неупругие свойства никелида титана после «abc»-прессования / А.И. Лотков, В.Н. Гришков, Е.Ф Дударев и др. // Вопросы материаловедения. - 2008. - №1. - С.23-30.

13. Lotkov, A. Mechanisms of microstructure evolution in TiNi-based alloys under warm deformation and its effect on martensite transformations / A. Lotkov, V. Grishkov, O. Kashin e.a. // Materials Science Foundation. - 2015. - V.81-82. - P.245-249.

14. Гришков В.Н. Мартенситные превращения в области гомогенности интерметаллида TiNi / В.Н. Гришков, А.И. Лотков // ФММ. - 1985. - Т.60. - Вып.2. - С. 351-355.

15. Лотков, А.И. Влияние степени деформации при изотермическом авспрессовании на эволюцию структуры и температуры фазовых превращений сплава на основе никелида титана / А.И. Лотков, О.А. Кашин, В.Н. Гришков, К.В. Круковский // Перспективные материалы. 2014. №9. С.5-18.

16. Жапова, Д.Ю. Неупругие свойства никелида титана после тёплого abспрессования / Д.Ю. Жапова, А.И. Лотков, В.Н. Гришков, В.Н. Тимкин, И.С. Родионов, А.С. Колеватов, А.А. Белослудцева // Известия вузов. Физика. - 2016. - Т. 59. - №7/2. -С.60-64.

17. Padmanadhan, K.A. Superlastic Flow: Phenomenology and Mechanics / K.A. Padmanadhan, R.A. Vasin, F.V. Enikeev - Springer – Verlag, 2001.- 586p.

18. Otsuka, K. Pseudoelasticity and Shape Memory Effect in Alloys / K. Otsuka, K. Shimizu // Intern. Metal Rev. - 1986. - V.31. - №3. - P.93-114.