КВАНТОВАННО-СТАТИСТИЧЕСКИЙ ПОДХОД К НАПРЯЖЕНИЮ ТЕЧЕНИЯ И ОБОБЩЕННЫЙ ЗАКОН ХОЛЛА-ПЕТЧА ДЛЯ ПОЛИКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ПРИ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЯХ

Решетняк А. А., Шаркеев Ю.П., Ерошенко А.Ю.

Институт Физики Прочности и Материаловедения СО РАН, Томск, Россия, E-mail: reshet@ispms.tsc.ru

Одним из основных направлений исследований в материаловедении являются поиски возможностей управления внутренней дефектной подструктурой кристаллитов для получения наилучших прочностных и пластических свойств поликристаллических (ПК) материалов. Оптимизация указанных свойств невозможна без использования новых технологий, среди которых наиболее известны методы интенсивной пластической деформации и их комбинации с рекристаллизационным отжигом, метод осаждения из газовой фазы и др. [1], позволяющие в широких пределах варьировать ориентацию, линейные размеры, d, элементов микроструктуры материалов, от мезополикристаллических и крупнозернистых (КЗ, 10-1000 мкм), до мелкозернистого (МЗ, 2-10 мкм), ультрамелкозернистого (УМЗ, 0,5-2 мкм), субмикрокристаллического (СМК, 100-500 нм), до нанокристаллических (НК,<100 нм) образцов. Экспериментальное изучение физико-механических свойств ПК материалов: микротвердости, Н, пределов текучести, σ_ν, и прочности, σ_s, выявило особенности механизма упрочнения при переходе к УМЗ, СМК и НК состояниям в материале. Систематически влияние параметров структуры материала на его прочностные свойства при квазистатическом деформировании началось с работ [2] в виде эмпирического соотношения Холла-Петча (ХП):

$$\sigma_{v}(d) = \sigma_{0} + k d^{-1/2}, \tag{1}$$

наблюдаемого на начальной стадии площадки текучести диаграммы " $\sigma = \sigma(\epsilon)$ ", для материалов с разными размерами зерен или при формальном значении, $\sigma_y(d) = \sigma(d)_{|\epsilon=0,002} \equiv \sigma_{0,2}(d)$, без ярко выраженной площадки. было продолжено в работах Р. Армстронга, Г. Конрада, Ф. Кокса, Г. Лэнгфорда, А. Томпсона, Дж. Севильяна, С.А.Фирстова, Б.А.Мовчана, Ю.Я. Подрезова, В.В. Рыбина, В.А.Лихачева, Р.З.Валиева, В.Е. Панина, Э.В. Козлова, Н.А.Коневой, описанных в обзорах [3,4]. Для УМЗ, СМК и НК образцов соотношение ХП испытало существенное отклонение, что потребовало модификации его правой части, вначале, квадратичным по степени $d^{-1/2}$ членом [5]:

$$\sigma_{\nu}(d) - \sigma_0 = k_1 d^{-1/2} + k_2 d^{-1}, \tag{2}$$

приводящей к учету параболичности графика ($d^{-1/2}, \sigma_v(d)$), а так же максимума у предела текучести, связанного с "отрицательным значением" коэффициента ХП: к: $k = (d\sigma_{y})/(d(d^{-1/2}))$ в области "аномальной" (k < 0) закономерности ХП. Существует много моделей, цель которых - обосновать выполнимость или исходного "линейного" или "квадратичного" соотношения ХП, на основе эмпирических подходов. Среди них, выделяют [4] модели: Кокса-Хирта; Архарова-Вестбрука; Муграби; упрочнения дислокациями; Коневой; модели 'кожуха'; Валиева Кима-Эстрина-Буша; трехмерные композитные. Их особенностью является приграничное упрочнение зерен дислокационными ансамблями, включая так называемые тройные и квадрупольные стыки зерен, в связи с их вкладом в (1), (2), и так же с концепцией повышенной кривизны-кручения кристаллической решетки (КР) [6]. При рассмотрении ПК агрегатов двухфазными материалами задача изучения поведения напряжения течения (HT) в зависимости от размера зерна, являющимся основной-твердой фазой и влияния границ зерен (ГЗ) как мягкой фазы усложняется (их доля при переходе к СМК и НК материалам возрастает до десятков процентов [7]).

Среди теоретических моделей, приводящих к одновременному описанию нормального и аномального законов ХП для σ_{y_i} и микротвердости, Н, можно выделить смешанную "модель пластичности ПК металлов, дополняющую дислокационную пластичность внутри зерен механизмом проскальзывания по ГЗ", на основе сильновязкой жидкости Максвелла в рамках моделирования МД для Си и AI [8]. Во-вторых, это- дислокационно-кинетическая модель Г.А. Малыгина [9], В-третьих, рассмат-

риваются модели с 3D динамикой дискретных дислокаций. Общие выводы из теоретических и экспериментальных работ по отношению к HT и σ_{y_i} таковы:

- Максимум σ_y достигается для ряда материалов при определенных значениях диаметра кристаллита d₀ в НК области при заданной температуре T и скорости пластической деформации (ПД) έ;
- 2) d₀ смещается в область крупных зерен с ростом Т и независимо с уменьшением $\dot{\varepsilon}$;
- 3) как для КЗ, так и НК материалов нет физической модели описывающей как нормальный, так и аномальный законы ХП на основе статистического подхода к спектру механических энергий кристаллитов, как основной фазе ПК материалов при фиксированной ПД в зависимости от распределения ансамбля дислокаций в них.

Наличие до настоящего времени дискуссии о (не)возможности образования 1d дефектов дислокаций ИЗ вакансий - Од дефектов ввиду отсутствия экспериментального подтверждения той или иной гипотезы подтверждает и отсутствие фундаментально обоснованной теории, учитывающей дефектную субструктуру кристаллической решетки (КР), которая бы приводила к соотношению типа ХП во всех диапазонах зерен для ПК материала при ПД. Заметим, [10], что ситуация с нормальным (КЗ материал) и аномальным (СМК, НК материалы) соотношениями ХП соответствует ситуации с излучением абсолютно черного тела (АЧТ) с участками Рэлея-Джинса (длинноволновая) и Вина (коротковолновая части излучения) для графика ([2, u(2, T))) спектральной плотности энергии излучения u(2, T) (с размерностью $[u(\mathbb{Z},T)] = [\sigma_v] \cdot 1c = 1 \Rightarrow B \cdot 1c \cdot M^{-3})$, объединенными в рамках теории М. Планка на основе дискретности спектра энергии излучения осцилляторов-атомов АЧТ.

В [10,11] предложена теория HT, в частности, σ_y, ПК материалов при квазистатической ПД в зависимости от среднего размера, *d*, зерен в диапазоне от 10⁻⁸ м - 10⁻² м. Зависимость основана на статистической модели распределения энергии каждого кристаллита одномодального ПК материала по квазистационарным уровням при пластическом нагружении с наибольшим уровнем равным энергии дислокации максимальной длины в рамках вакансионно-дислокационного механизма деформирования. Найденное распределение скалярной плотности дислокаций в каждом кристаллите для кубической КР с модулем сдвига *G*

$$\rho(b,d,T) = \frac{6\sqrt{2}}{\pi} \frac{m_0}{d^2} \varepsilon \frac{Gb^3}{2k_B T} \left(e^{M(\varepsilon) \left[\frac{b}{d} \right]} - 1 \right)^{-1}, M(\varepsilon) = \frac{Gb_\varepsilon^3}{2k_B T}.$$
(3)

при длине вектора Бюргерса $b_{\varepsilon} = b(1 + \varepsilon)$, энергетическом масштабе $M(\varepsilon)$ равном отношению энергии единичной дислокации к тепловой энергии колебаний, k_BT , атома в узле КР, в пределах КЗ и НК агрегатов при небольших ПД ε оценивается:

$$\left\{\lim_{d\gg b}, \lim_{d/b\sim M(\varepsilon)}\right\} \rho = \frac{6\sqrt{2}}{\pi} \frac{\varepsilon m_0}{bd} \left\{ (1+\varepsilon)^{-3}, \frac{Gb^3}{2k_BT} \frac{b}{d} \left(e^{M(\varepsilon) \left[\frac{b}{d}\right]} - 1 \right)^{-1} \right\} \sim m_0 \{10^{10}, 10^{13}\} \, \text{M}^{-2}, \tag{4}$$

что выполняется для экспериментально наблюдаемых плотностей дислокаций при *параметре полиэдральности* [10]: $m_0 \sim 10^1 - 10^2$, соответствуя скалярной плотности дислокаций в модели Конрада в КЗ пределе. (3) приводит к НТ из механизма деформационного упрочнения Тейлора,

$$\sigma(\varepsilon) = \sigma_0(\varepsilon) + \alpha m \, \frac{Gb}{d} \sqrt{\frac{6\sqrt{2}}{\pi} m_0 \varepsilon M(0)} \left(e^{M(\varepsilon) \left[\frac{b}{d} \right]} - 1 \right)^{-\frac{1}{2}},\tag{5}$$

с экстремальным размером зерна $d_0(\varepsilon, T)$, при котором НТ достигает максимума $\sigma_m(\varepsilon)$

$$d_0(\varepsilon, T) = b \frac{Gb^3(1+\varepsilon)^3}{2 \cdot 1,59363 \cdot k_B T}, \quad \sigma_m(\varepsilon) = \sigma_0 + \alpha m G \sqrt{\frac{6\sqrt{2}}{\pi} m_0 \frac{b\varepsilon \cdot 1,59363}{d_0(\varepsilon)}} (e^{1,59363} - 1)^{-\frac{1}{2}}.$$
 (6)

В (5), (6) m_0 связан с коэффициентом ХП $k(\varepsilon)$ в нормальном законе ХП при $\varepsilon = 0,002$, вытекающем из (5) в КЗ пределе формулой

$$\sigma(\varepsilon)|_{d\gg b} = \sigma_0(\varepsilon) + k(\varepsilon)d^{-\frac{1}{2}} \implies m_0 = \frac{\pi}{6\sqrt{2}} \frac{k^2(\varepsilon)}{(\alpha m \, G)^2 \varepsilon b} \frac{M(\varepsilon)}{M_0},\tag{7}$$

что позволяет уточнить значения m_0 . по экспериментальным данным для $k(\varepsilon)$ в различных K3 материалах и сформулировать модель в терминах постоянной $m_0 \cdot \alpha^2$. Закон (5) содержит нормальный и аномальный соотношения XП соответственно для K3 и HK образцов, имеет максимум для HT при экстремальном зерне с d_0 порядка 10^{-8} - 10^{-7} м, который смещается в область более крупных зерен с уменьшением T и увеличением ПД. В рамках предложенной статистической теории HT, имеются совпадения теоретических и экспериментальных данных для σ_y , d_0 для материалов с ОЦК (α -фаза Fe), ГЦК (Cu, Al, Ni) и ГПУ (α -Ti, Zr) кристаллическими решетками при T=300K

Таблица 1 - Значения	$\sigma_{\scriptscriptstyle 0,}$,	$\Delta \sigma_m = (\sigma_m - \sigma_0),$	$E_d^{L_e}$, k,	m_0 , (α для	ОЦК,	ГЦК	И	ГПУ
поликристаллических мет	алличе	ских образцов							

Тип КР	ОЦК		ГЦК	ГПУ		
Вещество	α-Fe	Cu	Al	Ni	α-Ti	Zr
σ₀,МПа	170 (отожж.)	70 отожж.); 380 (нагарт.)	22 (отож. 99,95%); 30 (99,5%)	80 (отожж.)	100(~10 0%); 300 (99,6%)	80-115
<i>b</i> , нм	$\frac{\sqrt{3}}{2}a=0,248$	<i>a</i> /√2 =0,2 56	a/√2 =0,28 6	<i>a</i> /√2 =0.24 9	<i>a</i> =0,295	<i>a</i> =0,32 3
G, ГПа	82,5	44	26,5	76	41,4	34
T, K	300	300	300	300	300	300
k,МПа₊ <i>м</i> ^{1/2-}	0,55-0,65; (10 ⁻⁵ -10 ⁻³ м)	0,25; (10 ⁻⁴ -10 ⁻³ <i>M</i>)	0,15; (10 ⁻⁴ -10 ⁻³ м)	0,28; 10 ⁻⁵ -10 ⁻³ м	0,38-0,43; 10 ⁻⁵ — 10 ⁻³ м	0.26; 10 ⁻⁵ — 10 ⁻³ м
α	—	0,38	-	0,35	0,97	-
$E_d^{L_e} = \frac{1}{2} \text{Gb}^3$, 9B	3,93	1,28	1,96	3,72	3,33	3,57
$m_0 \cdot \alpha^2$	3,66-5,11	2,57	2,28	1,11	5,83-7,47	3,69
<i>d</i> ₀ , нм	23,6	14,4	13,6	22,6	23,8	28,0
$\Delta \sigma_m$, ГПа	2,14-2,56	1,27	0,81	1,12	1,49-1,70	0, 90

На рис. 1 представлены графические зависимости $\sigma_y = \sigma_y (d^{-1/2})$ для кристаллитной фазы ПК агрегатов α -Fe, Cu, Al, Ni, α -Ti, Zr с плотноупакованными случайно ориентированными однородными по размеру зернами при T=300K при наиболее вероятных системах скольжения [11].

Исследована температурная зависимость прочностных характеристик. Показано (см. рис 2 в [11]) на примере AI, что предел текучести, σ_y с уменьшением температуры увеличивается при всех зернах больших $3d_0$, .затем уменьшается в НК области. Построены деформационные кривые для кристаллитной фазы α - Fe с выполнением условия разрушения Бэкофена-Консидера (см. рис 3 в [11]).

Рисунок 1- Графические зависимости для обобщенного закона XП (5) при $\varepsilon = 0,002$ с дополнительной верхней шкалой с размером d зерен в мкм. Выбраны меньшие из значений параметров m0(k) для α -Fe, α -Ti, значения σ_0 для отожженных материалов с максимумами для σ_y вычисленными в соответствую-щих таблице 1 экстремальных размерах зерен d₀ (6)

Однофазная модель ПК материала расширена включением разупрочняющей зеренно-граничной фазы с модификацией соотношения ХП (5) в виде:

$$\sigma_{\Sigma}(\varepsilon) = (1 - n\frac{b}{d})\sigma_{C}(\varepsilon) + (n - m)\frac{b}{d}\sigma_{GB}(\varepsilon, d_{GB}) - m\frac{b}{d}\sigma_{P}(\varepsilon, d_{P}), m \le n$$
(8)

где $\sigma_{C}(\varepsilon, d) = \sigma(\varepsilon, d)$ напряжение для первой фазы - основных зерен диаметра d образца, $\sigma_{GB}(\varepsilon, d_{GB})$ и $\sigma_{P}(\varepsilon, d_{P})$ напряжения для зерен и пор из области ГЗ средних размеров d_{GB} и d_{P} соответственно, с некоторой постоянной $n \sim 10^{0} - 10^{2}$, учитывающей среднее расстояние между зернами и сильно зависящей от подготовки состояний ГЗ. При n = m вся область второй фазы заполнена порами разных диаметров.

Предложенная теоретическая модель имеет очевидные перспективы применения, рссмотренные ранее на образцах α-Ti [12].

Литература:

1. Valiev R.Z, Zhilyaev A.P. Langdon T.G., Bulk Nanostructured Materials: Fundamentals and Applications, Wiley & Sons, New Jersey, 2014.

2. Hall E.O., // Proc. Roy. Soc.B.-1951. - V.64. - P.747-753.; Petch N.J., //J. Iron Steel Inst. -1953.-V.174. - P.25-28.

3. Мовчан Б.А., Фирстов С.А., Луговской Ю.Ф., Структура, прочность и сопротивление усталости микрокристаллических и микрослойных материалов. –Киев: Наукова думка, 2015.

4. Глезер А.М., Козлов Э.В., Конева Н.А. и др., Основы пластической деформации наноструктурных материалов. – М.: Физматлит, 2016.

5. Zhu Y.T., Huang J., Properties and nanostructures of materials processed by spd techniques *Ultrafine Grained Materials II*; Edited by Y.T. Zhu, T.G. Langdon, R.S. Mishra, et al.. TMS (The Minerals, Metals & Materials Society), 2002.

6. Панин В.Е., Гриняев Ю.В., Данилов В.И. и др., Структурные уровни пластической деформации и разрушения, Под ред. В.Е.Панина. – Новосибирск: Наука, Сиб. Отделение, 1990. – 255с.

7. Малыгин Г.А., // УФН. –2011. – Т.131, №11, с. 1129-1157.

8. Бородин И.Н., Майер А.Е., // Физика твердого тела. —2012.—Т.54. —№4.— С.759—766.

9. Малыгин Г.А., // Физика твердого тела. –1995. –Т.37 –№8. –С.2281–2292; Малыгин Г.А., // Физика твердого тела. – 2007.–Т.49 –№6. –.С. 961–982.

10. Решетняк А.А., Статистический подход к напряжению течения и обобщенный закон Холла-Петча для поликристаллических материалов при пластических деформациях. // Изв. вузов. Физика, – 2018.–Т.61 –№3.

11. Решетняк А.А. Особенности температурной зависимости обобщенного закона Холла-Петча и двухфазная модель для деформируемых поликристаллических материалов // Изв. вузов. Физика, – 2018.–Т.61 (принята в печать).

12. Курзина И.А., Ерошенко А.Ю., Шаркееев Ю.П.и др., // Материаловедение.—2010.—Т.5.—С.49.