ОЦЕНКА РАЗМЕРОВ БЕЗОПАСНЫХ ДЕФЕКТОВ В ЖЕЛЕЗНОДОРОЖНЫХ ОСЯХ КОЛЕСНЫХ ПАР, ЭКСПЛУАТИРУЮЩИХСЯ В УСЛОВИЯХ НИЗКИХ ТЕМПЕРАТУР

Соин К. А.

ОАО НПО "ЦНИИТМАШ", Москва, Россия kestmifi@mail.ru

Оси колесных пар, являющиеся одними из ответственных конструктивных компонентов железнодорожного подвижного состава, в процессе эксплуатации подвергаются интенсивным знакопеременным вращательно-изгибным циклическим нагрузкам, обусловливающим тяжелые условия работы осей.

Основными силовыми факторами, действующими на ось является вес вагона с грузом, динамические усилия от колебаний вагона на рессорах и силы от удара колес на стыках рельсов, а также боковые нагрузки, обусловленные действием инерционных сил при движении вагона по криволинейным участкам пути. Местами приложения сил к оси являются шейки и подступичные части. Имеются также остаточные напряжения и местные сборочные напряжения у ступичной части, возникшие при посадке колеса на ось.

По данным "Норм для расчета и проектирования вагонов железных дорог МПС колеи 1520 мм (несамоходных)" нагруженность осей характеризуется следующими параметрами:

1. Число циклов нагружения

$$N_c = \frac{365\Pi_c T_p 10^3}{\pi d_k (1 + k_n)}$$

где Π_c - средний суточный пробег (по данным конкретных депо);

 T_p расчетный срок службы оси (или время между ППР);

 d_k - диаметр круга катания, м;

 k_n коэффициент порожнего пробега (отношение пробега в порожнем состоянии к пробегу в нагруженном состоянии, для пассажирских вагонов k_n =0.

2. Максимальная нагрузка на шейку

$$P = P_{cm} + P_{\partial} + P_{u}$$

где P_{cm} статическая весовая нагрузка, приложенная к шейке оси; $P_{\partial} = P_{cm} \, k_{\partial\theta}$ вертикальная динамическая нагрузка от колебаний кузова на рессорах ($k_{\partial\theta}$ – коэффициент динамики, для грузовых 4-х осных вагонов $k_{\partial\theta}$ =0.33);

 P_{u} - нагрузка от действия центробежных сил в кривых, $P_{u}=\frac{P_{cm}}{g}\gamma_{u}\frac{h_{u}}{l}$, где $\gamma_{u}=0.07$ допустимое непогашенное центробежное ускорение вагона в кривой, $\gamma_{u}=0.07$ д;

 $h_{_{\!\mathit{u}}}$ - высота центра тяжести полностью загруженного вагона над уровнем осей колесных пар; I - половина расстояния между точками приложения вертикальной силы к шейкам оси ($P_{_{\!\mathit{u}}} \cong 0.07$ $P_{_{\!\mathit{cm}}}$).

Таким образом максимальная нагрузка на шейку оси составляет Р \cong 1.4 $^{P_{\it cm}}$. Для грузовых вагонов P_{cm} = 11.5 т. для пассажирских P_{cm} = 8.85 т. Боковая сила, приложенная к колесу, движущемуся по наружному рельсу кривой $H_1 = 2.9 \text{ T}$ (для грузового вагона). Приведенные выше значения соответствуют максимально возможным.

В настоящей работе механические свойств металла осей определялись по данным испытаний на статическое растяжение, ударный изгиб, статическую и циклическую трещиностойкость. Помимо годных осей, прошедших УЗК, исследовался металл осей, забракованных по прозвучиванию. Браковочным признаком является затухание УЗ сигнала, превышающее нормированный уровень, что является индикатором наличия крупнозернистой структуры металла и соответственно низких эксплуатационных свойств оси /1-2/.

В связи с отмеченным, для проведения механических испытаний были отобраны шесть осей типа РУ1Ш, три из которых прошли УЗ контроль, и три были забракованы по прозвучиваемости.

В таблице 1 приведены полученные результаты испытаний на растяжение (средние значения по трем образцам для каждой оси).

гаолица 1 - Механические своиства метала осеи.									
	Nº оси	σ ₀₂ , ΜΠα	$\sigma_{\!\scriptscriptstyle B}$, МПа	δ, %	ψ, %	T _{k0}	T ₀		
оси, проше- дшие УЗК	6	287	591	25.9	47	+30	-		
	1	381	757	23.8	51	+10	0		
	2	325	646	22.5	48.8	+25	+2		
забракованные оси	5	318	649	19	33	+60	-		
	3	327	627	25	45	+70	+36		
	4	310	618	25	44	+60	+37		

Исследование характеристик циклической трещиностойкости проводилось на компактных образцах типа СТ-1. Испытания осуществляли при внецентренном растяжении при $T = 20 \, ^{\circ}C$ и $T = -40 \, ^{\circ}C$ и коэффициенте асимметрии цикла R = 0. По данным этих испытаний были построены кинетические диаграммы усталостного разрушения в координатах: скорость роста трещины (d//dN) – размах коэффициента интенсивности напряжений (ΔK), рис.1.

Кинетическая диаграмма развития дефектов в области низких скоростей их распространения имеет излом и два характерных участка: - область, в которой $dl/dN = C_0 \cdot \Delta K^n_{\mu}$ скорость развития дефекта описывается уравнением Пэриса область интенсивного замедления роста дефекта ниже порогового значения ${}^{\Delta K}{}_{{}^{th}}$, разделяющего эти участки, для которой $dl/dN = C_{th} * \Delta K^{n_{th}}$. В данных соотношениях dl/dN - изменение размера дефекта за один цикл нагружения $\Delta K = K_{\rm max} - K_{\rm min}$ размах коэффициента интенсивности напряжений; C_0, C_{th}, n, n_{th} - характеристики материала.

На рис.1 приведены результаты испытаний на циклическую трещиностойкость металла годных и забракованных по прозвучиванию осей при температуре 20 и минус 40 °C. Как видно из рис.5 величина ΔK_{th} для забракованных осей, имеющих крупное зерно, несколько выше, чем для годных. В области выше порогового значения ΔK_{th}

скорость роста трещин в забракованных осях выше, а при $\Delta K < \Delta K_{th}$ ниже, чем в годных осях. Снижение температуры до минус 40 °C практически не влияет на скорость роста трещины при циклическом нагружении.

В таблице 2 приведены значения констант уравнения скорости роста трещин (для верхних огибающих) для металла годных и забракованных осей, а также огибающая всего массива данных.

Таблица 2 - Параметры кинетического уравнения скорости роста трещины

металла осей (верхняя огибающая).

ОСИ	C ₀ ,	n,	ΔK _{th} , МПа м ^{1/2}	C_{th} ,	n _{th} ,
прошедшие УЗК	10 ⁻⁹	3.4	19.5	2·10 ⁻⁴⁴	30.4
забракованные	5·10 ⁻¹²	5.2	28	8·10 ⁻⁶⁵	41.7
весь массив	7·10 ⁻¹²	5.2	19.5	2·10 ⁻⁴⁴	30.4

Учитывая уровень действующих на оси нагрузок можно отметить, что развитие дефектов в процессе эксплуатации происходит преимущественно в припороговой области, где снижения свойств металла забракованных по прозвучиванию осей не установлено.

Рисунок 1 - Ззависимость скорости роста трещины металла осей от коэффициента интенсивности напряжений. 1, 3 — оси, прошедшая УЗК (1- $T=20^{\circ}C$, 3 - $T=-40^{\circ}C$); 2 — оси, забракованные по прозвучиванию, $T=20^{\circ}C$.

Для осей колесных пар характерно циклическое нагружение, с количеством циклов порядка N=10 9 за срок эксплуатации. Таким образом, для определение допускаемых размеров дефектов необходимо располагать данными по закономерностям развития трещин при скоростях порядка 10 $^{-9}$ - 10 $^{-8}$ мм/цикл, т.е. при $\Delta K \leq \Delta K_{th}$

Важнейшим вопросом при этом является определение порогового значения размаха коэффициентов интенсивности напряжений (КИН) в зависимости от асимметрии цикла нагружения ${\it R}$.

Обобщение данных исследований и нормативной методики [6], позволило предложить расчетную зависимость порогового размаха КИН от асимметрии цикла в следующей форме: $\Delta K_{th} = \Delta K_{th0} * (1-R)^{0.6}$, при $R \le 1$ и $\Delta K_{th} = 20 M\Pi a \sqrt{M}$, при R > 1, где $\Delta K_{th0} = 6 M\Pi a \sqrt{M}$, рис.2.

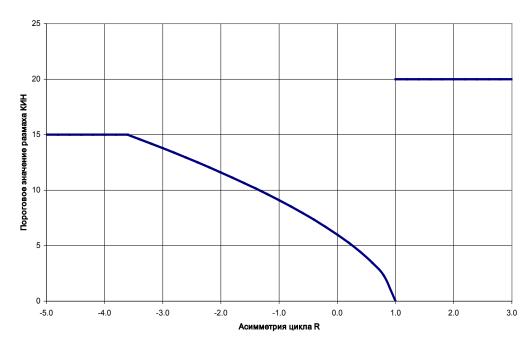


Рисунок 2- Расчетная зависимость порогового значения КИН от асимметрии цикла.

В связи с ограниченным объемом экспериментальных данных для материала осей в качестве расчетной зависимости для распространения дефекта на уровне выше порогового значения КИН использовалась нормативная зависимость [6]

$$v = C_0 * [\Delta K]^n$$
 , где $C_0 = 3*10^{-8}$ мм/цикл, $n = 2.9$.

Для нормативной зависимости величина $^{\Delta K_{th}}$ = 6 МПа·м $^{0.5}$. В уравнении для припороговой области для консервативности принято значение показатель степени n_{th} = 8. Второй параметр уравнения определяется из условия непрерывности зависимости скорости роста трещины выше и ниже порогового значения и составляет

$$C_{th} = \frac{C_0}{\left(\Delta K_{th}\right)^{n_{th}-n}}$$

Расчетная зависимость скорости роста трещины, определяемая данными параметрами располагается выше и левее всего массива экспериментальных данных для нормальных и забракованных осей на рис.1.

Расчет развития дефекта в одном цикле нагружения производится в следующей последовательности

- Расчет размаха КИН от циклических составляющих напряжений
- Расчет КИН от среднего напряжения цикла
- Расчет коэффициента асимметрии R
- Расчет порогового значения размаха КИН.
- Расчет подроста дефекта в точке A и C с учетом уровня ΔK (выше или ниже порогового значения)
- Расчет размера дефекта после цикла нагружения $a=a+v_{\scriptscriptstyle A}$, $c=c+v_{\scriptscriptstyle C}$.

На основе представленной методики в среде MathCad была написана программа, позволяющая рассчитывать кинетику роста дефектов в оси.

На рисунке 3 в качестве примера показана форма контура поверхностных дефектов в галтели шейки с начальными размерами 4x12 мм (а) и 4x40 мм (б) в процессе их развития.

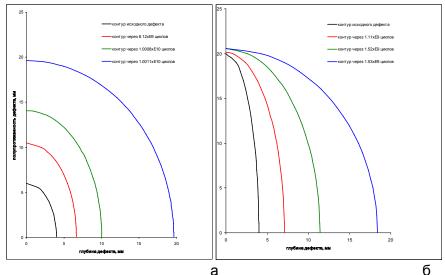


Рисунок 3 - Результаты расчета развития дефекта в галтели шейки (15 мм от торца предподступицы)

Литература

- 1. СТО РЖД 1.11.001-2005. Контроль неразрушающий приемочный. Оси колесных пар подвижного состава. Методические указания по ультрозвуковому контролю. Стандарт ОАО "РЖД" М.: 2005, 32 с.
- 2. Расчет основных частей вагонов. Справочное руководство, М.: Транспорт, 2000, 420 с.
- 3. ПНАЭ Г-7-002-86 Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок, м., Энергоатомиздат, 1989 г.. 528 с.
- 4. ГОСТ 25.506-85. Методы механических испытаний материалов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. Госстандарт СССР, Москва, 61с.
- 5. ASTM E 1921-05. «Standard Test Method for Determination of Reference Temperature, T_o , for Ferritic Steels in the Transition Range», in: Annual Book of ASTM Standards, vol.03.01, pp. 1068-10841.
- 6. .РД ЭО 0330-01. Руководство по расчету на прочность оборудования и трубопроводов реакторных установок РБМК, ВВЭР И ЭГП на стадии эксплуатации. М., Федеральное агентство по атомной энергии. 2004, 136 с.
 - 7. Л.М. Школьник, Ю.Е. Коваленко, Н.И. Мартынов, Л.А. Усова. Полые оси и валы. М.- Машиностроение, 1968,184 с.
- 8. МР 125-02-95. Правила составления расчетных схем и определение параметров
- нагруженности элементов конструкций с выявленными дефектами, М., НПО ЦНИИТМАШ, 1995, 52 с.
- 9. В.А. Гапанович, А.Х. Вопилкин, А.К. Гурвич, А.Г. Казанцев, Д.А. Кононов. Определение остаточного ресурса объектов повышенной опасности. В мире неразрушающего контроля. 2006, №4(34). с.75-77.
- 10. Gravier et. Al. Revue Generale des Chemins de Fer, 1999, №3, р.33-40. (Прогнозирование срока службы осей колесных пар).