МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ СЛОЕВ, СОДЕРЖАЩИХ ФУЛЛЕРЕНЫ С₆₀

Шпилевский¹ Э.М., Филатов¹ С.А., Шилагарди² Г., Тувшинтур² П.

¹Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси, г. Минск, Беларусь, eshpilevsky@rambler.ru ²Национальный университет Монголии, г. Улан-Батор, Монголия, gshilagardi@yahoo.com, tuvshinee_99@yahoo.com

Фуллерены часто рассматривают как инструмент и основу для создания перспективных материалов с новыми свойствами [1]. Свойства наноматериалов и наноструктур активно изучаются и уже сегодня многое известно. Исследованию наноматериалов и разработке нанотехнологий посвящен ряд обзоров и монографий, например [2-4]. В настоящей работе приведены результаты исследования механических свойств материалов на основе металлических матриц, допированных малыми количествами фуллерена C_{60} . В качестве металлических матриц использовали алюминий, титан и сталь марки C45.

Композитные пленки получали в вакууме на установке «ВУП-4» конденсацией совмещенных атомно-молекулярных потоков при давлении остаточных паров воздуха 1.10-4 Па. Поскольку фуллерены начинают сублимировать при температурах менее 700 К, а температура испарения металлов выше 1500 К, то для получения тметаллфуллереновых плёнок использовались два испарителя. Разогрев испарителей обеспечивался пропусканием электрического тока. В качестве испарителей для металлов использовались молибденовые «лодочки», для C_{60} — танталовые. пленок с различным содержанием фуллеренов обеспечивалось различными плотностями атомно-кластерных потоков компонентов, что в свою очередь достигалось регулированием температуры испарителей и изменением их расположения относительно подложки. Реальная концентрация фуллеренов в металлфуллереновых пленках определялась методом рентгеновского микроанализа по интенсивности характеристического рентгеновского излучения K_{α} -линий атомов металла и углерода в пленках заданной толщины.

Размер и форма зерен сплава зависят от типа металла, его концентрации и температуры подложки. Так, для системы Al- C_{60} зерна преимущественно имеют вид пирамид, для системы Ti- C_{60} - полусфер, а для системы Сталь- C_{60} - вытянутых куполов. Их линейные размеры составляют 30...3000 нм., в зависимости от типа металла и концентрации фуллеренов.

Механические свойства композитов определяли р несколькими методами: для толстых слоев (2-3 мкм) - на разрывной машине «Инстрон» при скорости движения подвижных захватов 60 мм/мин, путем построения диаграмм σ =f(δ I/I) и на микротвердомере ПМТ-3, для тонких пленок - на нанотвердомере Nano Indenter II (фирма MTS Systems, США).

Нанотвердомер Nano Indenter II оснащен алмазным индентором, заточенном в форме трехгранной пирамиды (индентор Берковича). Применение индентора Берковича позволяет проводить испытания тонких пленок (100-200 нм) при намного более низких нагрузках, чем в случае применения индентора Виккерса.

В нашем случае при каждом испытании индентор Берковича нагружался трижды. Первый раз нагрузка на индентор возрастала до тех пор, пока не достигалась глубина в 50 нм. При этой нагрузке индентор выдерживался 10 с и нагрузка уменьшалась на 90%. После этого нагрузку увеличивали внедрения индентора до 100 нм и до 150 нм., то есть, твердость определялась на трех глубинах за один раз. При этом задавалась

не нагрузка, а глубина контакта. Скорость внедрения индентора была равна 5 нм/с, 1 мH = 0,1 грамма.

На рис. 1 представлена типичная диаграмма внедрения индентора Берковича для фуллеритовых плёнок.

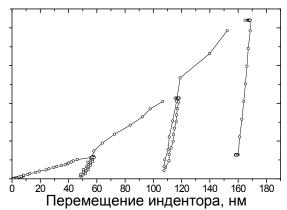


Рисунок 1 - Диаграмма внедрения индентора Берковича для фуллеритовых плёнок

Установлено, что для металл-фуллереновых плёнок с увеличением содержания металла упругость и нанотвёрдость возрастают, возрастает также их износостойкость, что объясняется изменением наноструктуры.

Аналогичные результаты получены для тонких металл-фуллереновых плёнок, сформированных в дуговом разряде в гелиевой среде на стальном аноде при использовании графитового катода и характерных для образования фуллеренов режимов горения дуги. Такие плёнки отличаются высокими значениями твердости и износостойкости [5]. Зависимость микротвёрдости углеродногометалл-фуллереновой плёнки и исходного материала (сталь C45) от расстояния от центра образца приведены на рисунке 2.

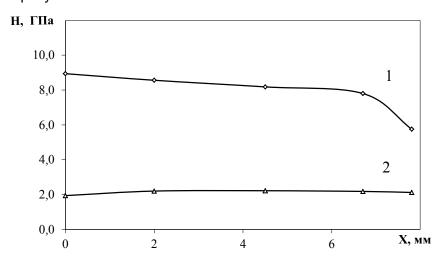


Рисунок 2 - Изменение микротвёрдости металл-фуллереновой плёнки (1) и подложки (сталь С45) (2) от центра электрода к его периферии

Увеличение микротвёрдости плёнки в сравнении с микротвёрдостью исходной подложки (сталь С45), более чем в 4 раза объясняется формированием наноразмерной структуры и образованием углеродных фаз.

В приведенной таблице приведены механические характеристики композитов исследованных металл-фуллереновых систем

Таблица - Механические свойства композита сталь С45+С60

Ta movani logini oponetra komilogita otariz o lo e				
Macc.	Предел	Прочн.	Относ.	Модуль
доля	упругости	при	удлинение	Юнга,
C ₆₀ ,	при	разрыве,	при пределе	ГПа
%	растяж., σ _ν ,	σ _р , МПа	упругости,	
	МПа		ε _ν , %	
0,0	520	88	6,1	6,31
0,01	543	101	2,2	7,47
0,05	602	106	2,1	8,66
0,1	621	90	2,0	9,47
0,25	610	94	2,9	9,13

Таким образом, показано, что ведение фуллеренов в металлическую матрицу значительно изменяет их механические свойства: повышает предел прочности, микротвёрдость, внутренние механические напряжения. Упрочнение металлов введением фуллеренов вызвана структурными изменениями, приводящими к увеличению дисперсности и повышением внутренних механических напряжений за счет внедрения крупноразмерных (превышающие размеры атомов металла в 14-16 раз) молекул C_{60} в металлические кристаллиты.

Полученные результаты указывают на перспективность применения металлфуллереновых плёнок в электронной технике, поскольку трещинообразование и отслаивание плёнок не наблюдалось вплоть до толщины 2 мкм, а титан-фуллереновых плёнок для биомедицинских целей, например, при изготовлении эндопротезов.

ЛИТЕРАТУРА

- 1. Пул Ч.(мл.), Оуэнс Ф. Нанотехнологии. М.: Техносфера., 2006. 336 с.
- 2. Витязь П.А., Свидунович Н.А. Основы нанотехнологий и наноматериалов. Мн.: Выш.шк., 2010.- 302.
- 3. Vityaz P.A., Shpilevsky E.M. Fullerenes in matrices of different substances //Journal of Engineering Physics and Thermophysics. 2012, Volume 85, Issue 4, Page 780-787.
- 4. Шпилевский Э.М., Пенязьков О.Г., Шилагарди Г., Тувшинтур П. Материалы, содержащие фуллерены: достижения и нгадежды. //Наночастицы в конденсированных средах. Сб. науч. Статей. Минск: ИТМО им. А.В. Лыкова НАН Беларуси. 2015. С. 3-13.
- 5. Shpilevsky E.M., Zhdanok S.A., Schur D.V. Containing carbon nanoparticles materials in hydrogen energy. Hydrogen Carbon Nanomaterials in clean Energy Hydrogen Systems- II. Dordrecht: Springer Science, 2011. PP. 23-39.