ЭВОЛЮЦИЯ НАНОСТРУКТУРЫ СПЛАВА Zr1Nb ПОСЛЕ РАЗЛИЧНЫХ РЕЛАКСАЦИОННЫХ ВОЗДЕЙСТВИЙ И ПОЛЗУЧЕСТИ В ОБЛАСТИ ТЕМПЕРАТУР 300-700 К

Соколенко В.И., Карасева Е.В., Мац А.В., Савчук Е.С., Фролов В.А.

Национальный научный центр «Харьковский физико-технический институт» ул.Академическая, 1, г.Харьков, 61108, Украина E-mail: vsokol@kipt.kharkov.ua.

Для релаксации напряжений неравновесной структуры наноматериалов, полученных методами ИПД, обычно используют термообработки, эффективность которых, с точки зрения снятия внутренних напряжений, возрастает с увеличением температуры. Однако с повышением температуры отжига возрастает вероятность существенного укрупнения зерен, что может привести к потере преимуществ наноструктурного состояния [1].

Одним из перспективных методов улучшения свойств наноструктурных материалов является ультразвуковое воздействие (УЗВ). Ультразвуковая волна, проходя через материал, взаимодействует с дефектами разного типа и вызывает изменения в структуре, которые зависят от параметров ультразвука, главным образом, от его мощности. Варьируя параметры УЗВ, можно получать в материале структуру, имеющую необходимые свойства [2].

В работе исследовали сплав Zr1Nb в наноструктурном состоянии, полученном методом комбинированной прокатки при 77–300 К, величина истинной деформации $\epsilon \sim 3,9$ (MO-1). С целью влияния на наноструктуру и свойства сплава Zr1Nb были проведены термообработки в области температур 500–870 К, t=1 ч (MTO) и УЗВ при T=300 К в режиме f=20 кГц, $\sigma_{УЗВ}$ =80 МПа, t=10 мин (MO-2). УЗВ в таком режиме производит разупрочняющее действие на деформированный материал [2,3].

После различных воздействий образцы сплава Zr1Nb испытывали в условиях ползучести при T=300–700 К. Анализ полученных результатов показывает, что отжиги в области температур 500–800 К (МТО-1, МТО-2, МТО-3, МТО-4) практически не приводят к изменению механических характеристик материала по сравнению с исходным состоянием (рис.1) и только после отжига при 870 К (МТО-5) наблюдается

снижение прочностных характеристик и увеличение пластичности на ~20 %.

В результате ультразвуковой обработки (MO-2) прочностные характеристики материала снизились на ~15 % по сравнению с прокатанными образцами (рис.1, кр.5), при этом пластичность увеличилась на ~16%.

Структурные исследования показали, что после комбинированной прокатки на величину истинной деформации ε~3,9 в сплаве Zr1Nb формируется наноструктура с размером зерна ~60 нм. Плотность дислокаций в теле зерен ~3,4×10¹⁰ см⁻². Основная масса составляет дислокаций концентрируется у границ зерен и неоднородность Резкая тройных стыков. контраста электронно-микроскопических на изображениях свидетельствует о высоком уровне внутренних напряжений и наличии пиковых напряжений в стыках границ (рис.2а).

Рисунок 1- Зависимости скорости ползучести при Т=700 К от приложенного напряжения после воздействий: 1 – MO-1; 2 – МТО-1 (500 K); 3 –МТО-2 (570 K); 4 – МТО-3 (720 K); 5 – MO-2; 6 – МТО-4 (800 K); 7 – МТО-5 (870 K).

Рисунок 2- Структура сплава Zr1Nb после воздействий: а) MO-1; б) MTO-5; в) MO-2; г) MO-1+ ползучесть при 700 К(σ≈ 0,9σ_B); д) MTO-5 + ползучесть при 700 К(σ≈0,9σ_B); е) MO-2 + ползучесть при 700 К(σ≈ 0.9σ_B).

Отжиги наноструктурного сплава Zr1Nb в интервале температур 500–570 К не вызывают заметного изменения характера структуры. Все ее особенности, свойственные наноструктурному состоянию сохраняются. После отжигов при 720–800 К наблюдаются структурные изменения, свидетельствующие о процессах возврата в границах зерен. После отжига при 870 К первичная рекристаллизация охватывает весь объем материала (рис.2б). Происходит формирование новых зерен размером до 1 мкм. Зерна имеют равноосную форму, при этом изменяется внутризеренная структура и структура их границ. Плотность дислокаций внутри зерен не превышает ~10⁸ см⁻².

Воздействие ультразвука с амплитудой касательных напряжений 80 МПа не изменяет морфологию исходной

деформационной наноструктуры сплава Zr1Nb (рис.2в), но она равновесной более становится И однородной, возрастает количество при этом зерен размером 60 нм, размер средний зерен несколько увеличивается – до 67 нм (рис.3). Это уменьшением связано С числа фрагментов с малоугловыми границами по сравнению с деформированным состоянием. Границы зерен становятся более ровными и тонкими, углы в тройных стыках зерен приближаются к равновесным, уменьшается плотность дефектов внутри зерен.

Известно, что в процессе ультразвукового воздействия

Рисунок 3- Спектры распределения по размерам зерен образцов сплава Zr1Nb после воздействий: 1 – MO-1; 2 – MO-2.

генерируется большое число вакансий, что стимулирует неконсервативное скольжение [2,3]. При этом диссипация энергии ультразвуковых колебаний происходит, в основном, на границах раздела, что приводит к формированию более равновесного состояния структуры границ, а также к локальным разогревам, снижению уровня локальных напряжений и активизации работы источников дислокаций. Действие всех вышеперечисленных факторов вызывает активное перемещение, взаимодействие и аннигиляцию дислокаций на границах зерен. Границы зерен становятся более равновесными, уменьшается уровень дальнодействующих напряжений, что приводит к снижению характеристик прочности сплава (рис.1, кр.5).

Проведенные структурные исследования показали, что наноструктура, созданная ИПД прокаткой, оказалась неустойчивой к последующему механико-термическому воздействию в условиях ползучести при 700 К (рис.2г). Большинство границ разрушилось и на их месте сформировались дислокационные границы полигонального типа. Размеры полигонов колеблются в пределах 50-150 нм. Трансформация исходной структуры происходит вследствие активизации процессов возврата за счет переползания дислокаций у границ зерен, а также процессов генерации и аннигиляции дислокаций на границах, что приводит к их рассыпанию [3,4].

Полностью рекристаллизованная после отжига при 870 К структура также оказалась неустойчивой в условиях ползучести при 700 К. Границы зерен разрушились, образовались скопления дислокаций с тенденцией к образованию ячеистой структуры (рис.2д).

Действие растягивающих напряжений в условиях ползучести при 700 К на сплав, обработанный ультразвуком, приводит к перестройке структуры и развитию динамической рекристаллизации (рис.2е). Средний размер рекристаллизованных зерен составляет 100 нм. Релаксация напряжений происходит вследствие перестройки структуры таким образом, что стадия полигонизации отсутствует. Развивается динамическая рекристаллизация и формируется новая рекристаллизационная наноструктура, более приспособленная к новым условиям деформирования и обеспечивающая высокие сопротивление ползучести и уровень прочностных характеристик с сохранением достаточного запаса пластичности, т.е. с более высоким уровнем термомеханической устойчивости.

Таким образом, термообработки наноструктурного сплава Zr1Nb, которые обеспечивают повышение пластичности, качественно изменяют структуру сплава, разрушая наноструктурное состояние, что приводит к снижению механических характеристик и степени устойчивости материала к последующей деформации в процессе ползучести при температуре 700 К.

Ультразвуковая обработка наноструктурного сплава Zr1Nb приводит к снижению уровня внутренних напряжений вследствие формирования более равновесной структуры границ без заметного роста зерен. В процессе последующей деформации в условиях ползучести при 700 К происходит релаксация внутренних напряжений вследствие динамической рекристаллизации и образование новой стабильной наноструктуры, что приводит к заметному повышению термомеханической устойчивости материала.

ЛИТЕРАТУРА

1. Р.З. Валиев, И.В. Александров Наноструктурные материалы, полученные интенсивной пластической деформацией. Москва: Логос. 2000, 271 с.

2. А.В. Мац, В.М. Нетесов, В.И. Соколенко Ультразвуковое воздействие на наноструктуру сплава Zr-2,5%Nb // ВАНТ. Серия: «Физика радиационных повреждений и радиационное материаловедение». – 2011, v.74, №4, p.108 – 110.

3. V.I. Sokolenko, V.M. Gorbatenko, E.V. Karaseva, A.V. Mats, E.S. Savchuk, V.A.Frolov. Ultrasound influence on creep nanostructured Zr // Problems of atomic science and technology. Series: "Vacuum, Pure materials, Superconductors". 2016, V.101, №1, p.41-44.

4. E.V. Karaseva, A.V. Matz, V.I. Sokolenko, V.A. Frolov Effect of structural instability on creep of zirconium subjected to severe plastic deformation // Problems of atomic science and technology. Series: "Vacuum, Pure materials, Superconductors". 2014, V.89, №1, p.106-109.