ТЕОРИЯ И МЕТОДИКА ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ТЕКУЧЕСТИ И ПЛАСТИЧНОСТИ МАТЕРИАЛОВ МЕТОДОМ ИНДЕНТИРОВАНИЯ

Мильман Ю.В., Чугунова С.И., Гончарова И.В.

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, milman@ipms.kiev.ua

Твердость по Мейеру *HM=P/S* (где *P* – нагрузка на индентор, *S* – площадь проекции отпечатка твердости на исходную поверхность образца) имеет четкий физический смысл среднего контактного давления. Использование этой величины при измерении твердости пирамидальными или коническими инденторами позволило в последние годы разработать теорию и методику определения предела текучести и пластичности материалов.

В настоящем докладе дано краткое описание теоретических работ, посвященных этой проблеме и описаны достаточно простые методики определения предела текучести и пластичности материалов методом микро- и наноиндентирования.

<u>Определение предела текучести материалов.</u> Соотношение между пределом текучести σ_s и твердостью *HM* разработаны в ряде ядерных моделей индентирования [1-4 и др.]. Наиболее достоверной авторы считают модель Джонсона [1], особенно в ее усовершенствованном варианте [3,4].

Схема ядерной модели индентирования в соответствии с [4] приведена на рис.1.

Рисунок 1- Схема взаимодействия индентора и образца под нагрузкой *Р* в сферической системе координат 0*гФф*,

$$HM = P/(\pi c^2)$$
 [4].

В [4] для определения предела текучести *σ*_s получена система трех трансцендентных уравнений с тремя неизвестными *z*, *σ*_s и *x*:

$$\int z = ctg\gamma_i - \frac{2HM \cdot \left(1 - v_i^2\right)}{E_i},$$
(1a)

$$\left\{ (1 - \theta \sigma_S) \cdot (x^3 - \alpha) = \frac{\beta}{\sigma_S} z, \right\}$$
(1b)

$$\left[\left(\frac{2}{3}+2\ln x\right)-\frac{HM}{\sigma_S}=0.$$
(1c)

При этом использованы обозначения: $\alpha = \frac{2(1-2\nu)}{3(1-\nu)}; \quad \beta = \frac{E}{6(1-\nu)}; \quad \theta = \frac{2(1-2\nu)}{E};$

E, *v* и *E_i*, *v_i* – модули Юнга и коэффициенты Пуассона образца и индентора соответственно; *x* – соотношение радиуса зоны упруго-пластической деформации под индентором *b*_S и радиуса отпечатка твердости *c*, 2_{*j*_i} – угол при вершине конического индентора.

Решение этой системы позволяет найти предел текучести σ_s , относительный радиус зоны упруго-пластической деформации *х* и параметр Тэйбора *C=HM*/ σ_s .

В табл.1 показаны результаты для некоторых сплавов в соответствии с [4]. Видно, что параметр Тэйбора С – важнейшая характеристика для расчета предела текучести, изменяется от 4,02 для пластичного алюминия до 1 для хрупких при стандартных механических испытаниях керамических материалов. Величина *х* при этом уменьшается от *x* = 5,33 до значений близких к 1.

Таблица 1- Механические характеристики материалов (<i>HM</i> , <i>E</i> , <i>v</i> _S) и характеристики,
рассчитанные по усовершенствованной ядерной модели индентирования (С, σ_{S} , δ_{H} , x)

Материалы		<i>НМ</i> , ГПа	<i>Е</i> , ГПа	С	$\sigma_{\! m s}$, ГПа	δ_{H}	X
ГЦК металлы	Al	0,1728	71	4,02	0,043	0,99	5,33
	Cu	0,486	130	3,74	0,13	0,98	4,47
ОЦК металлы	Fe	1,512	211	3,02	0,50	0,95	3,29
	W (001)	4,32	420	2,73	1,58	0,92	2,80
ГПУ металлы	Ti	1,1124	120	2,93	0,38	0,95	3,09
	Mg	0,324	44,7	2,94	0,11	0,95	3,3
Интерметаллиды	Al ₆₆ Mn ₁₁ Ti ₂₃	2,2032	168	2,42	0,91	0,87	2,42
	Al₃Ti	5,3352	156	1,67	3,19	0,76	1,65
AMC	$Fe_{40}Ni_{38}Mo_4B_{18}$	7,992	152	1,25	6,39	0,62	1,34
Квазикристалл	$AI_{70}Pd_{20}Mn_{10}$	7,56	200	1,55	4,88	0,71	1,55
Тугоплавкие материалы	WC (0001)	18,036	700	1,89	9,56	0,81	1,84
	NbC (100)	25,92	550	1,22	21,26	0,54	1,32
	ZrC (100)	23,76	410	1,06	22,48	0,46	1,22
Ковалентные кристаллы	Ge (111)	7,776	130	1,1	7,06	0,49	1,24
	Si (111)	11,34	160	0,96	11,84	0,42	1,16

<u>Определение характеристики пластичности материалов.</u> Характеристика пластичности материалов определяется при индентировании в соответствии с [5,6] как $\delta_H = \varepsilon_p / \varepsilon_t$, (2)

где ε_p и ε_t – соответственно пластическая и общая деформация на контактной площадке индентор – образец. Величина δ_H хорошо соответствует современному определению пластичности в отличие от удлинения до разрушения δ , определяемого при испытании на разрушение [5,6]. Значение δ_H может быть определено для материалов, хрупких при стандартных механических испытаниях, а также для покрытий и тонких слоев. В [5,6] показано, что для четырехгранног о индентора Виккерса δ_H может быть рассчитана по уравнению:

$$\delta_H = 1 - 14.3 \cdot \left(1 - \nu - 2\nu^2\right) \frac{HV}{E}.$$
(3)

Подобная δ_H характеристика пластичности может быть определена при инструментальном индентировании как

$$\delta_A = A_p / A_t \,, \tag{4}$$

где *А_р* и *А_t* соответственно пластическая и общая работы, затраченные на образование отпечатка твердости.

Используя выражения (1c) и (3), в [4] было найдено соотношение между δ_{H} и параметром Тэйбора С:

$$\delta_{H} = 1 - \frac{2,21zC\left(1 - \frac{2v^{2}}{1 - v}\right)}{exp(1,5C - 1) - \alpha}.$$
(5)

Как видно из рис.2 уравнение (5) хорошо описывает связь C и δ_{H} . При этом параметр Тэйбора C определяется пластичностью материалов и сам может быть использован как характеристика пластичности. Однофазные материалы имеют удовлетворительную пластичность при испытании на растяжение, если C > 2,5.

Упрощенная методика определения предела текучести и пластичности. Характеристику пластичности δ_H рассчитывают по (3). Параметр Тэйбора *C* находят по кривой на рис.2 и предел текучести рассчитывают как $\sigma_S = HM/C$. Возможность определения предела текучести и пластичности существенно увеличивает информативность результатов индентирования, и эта методика может широко использоваться в лабораторной практике.

Литература:

- 1. K.L. Johnson. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
- 2. K.Tanaka. Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model. J. Mater. Sci. 1987, vol.22, p.1501-1508.
- 3. Б.А.Галанов, Ю.В.Мильман, С.А.Ивахненко, Е.М.Супрун, С.И.Чугунова, А.А.Голубенко, В.Н.Ткач, П.М.Литвин, И.В.Воскобойник. Усовершенствованная ядерная модель индентирования и ее применение для измерения твердости алмаза. Сверхтвердые материалы. 2016, №5, с.3-24.
- 4. B.A.Galanov, Yu.V.Milman, S.I.Chugunova, I.V.Goncharova, I.V.Voskoboinik. Application of the Improved Inclusion Core Model of the Indentation Process for the Determination of Mechanical Properties of Materials. Crystals. 2017, vol.7, No.3, p.87-99; doi:10.3390/cryst7030087 www.mdpi.com/journal/crystals.
- 5. Yu.V. Milman, B.A. Galanov, S.I. Chugunova. Plasticity Characteristic Obtained through Hardness Measurement. Acta Met. Mater. 1993, v.41, No.9, p. 2523-2532.
- 6. Ю.В.Мильман, С.И.Чугунова, И.В.Гончарова. Пластичность, определяемая методом индентирования, и теоретическая пластичность материалов. Известия РАН. Серия физическая. 2009, т.73, №9, с. 1282-1289.