ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОГО И ПОСТ-ДЕФОРМАЦИОННОГО СТАРЕНИЯ НА ПРОЧНОСТЬ НАНОСТРУКТУРИРОВАННОГО АЛЮМИНИЕВОГО СПЛАВА Д16

Маркушев М. В., Автократова Е. В., Ильясов Р. Р., Крымский С. В., Хазгалиева А. А., Ситдиков О. Ш.

Институт проблем сверхпластичности металлов РАН, г. Уфа, Россия mvmark@imsp.ru

Работы в области «деформационного» наноструктурирования (ДHC) алюминиевых сплавов преимущественно сводятся к выявлению роли вторых фаз в формировании структуры и свойств. При этом, несмотря на огромный объем выполненных исследований, механизмы и факторы, отвечающие за эффективность воздействия частиц, до сих пор во многом не ясны и не имеют однозначной трактовки. Так, например, в [1,2] утверждается, что введение дисперсных фаз и/или увеличение их объемной доли приводит к меньшему размеру и большей доли новых зерен при ДНС. А в [3-5], показано, что формирование высокой плотности наноразмерных упрочняющих фаз при предварительном старении высокопрочных сплавов, напротив, может частично или даже полностью подавить наноструктурирование их матрицы, и заметно снизить прочность.

Цель работы – исследовать феноменологию и природу влияния предварительного и пост-деформационного старения на структуру и твердость среднепрочного дисперсионно-твердеющего алюминиевого сплава Д16, подвергнутого ДНС.

Материалом исследования служил промышленный пруток сплава стандартного состава (Al-4.4Cu-1.4Mg-0.7Mn, вес.%). Образцы в форме диска Ø 20х2 мм сначала закаливали в воду с 505°С, затем часть из них искусственно старили от 1 до 10 часов при 190°С. ДНС реализовали кручением под высоким давлением (КВД) (10 оборотов, P=6 ГПа, Т_{ком}). Последующее старение проводили при 100°С с выдержкой до 100 часов. Структуру сплава анализировали с помощью просвечивающего электронного микроскопа (ПЭМ). Объекты получали электрополировкой при -28°С в 20% растворе HNO₃ в CH₃OH. Микротвердость определяли на приборе ИТВ-1-М при нагрузке 1 Н. Твердость и структуру изучали на середине радиуса диска.

Исходный пруток после закалки имел преимущественно грубоволокнистую (толщина волокон ~100-200 мкм) структуру [6,7]. По границам волокон располагались грубые частицы избыточных и примесных фаз, а в их теле – вытянутые вдоль направления прессования выделения Т-фазы (Al₂₀Cu₂Mn₃) с размерами 330×70 нм и плотностью ~3-4×10² мкм⁻³. При последующем старении, вследствие распада пересыщенного Си и Ма алюминиевого твердого раствора, сначала дополнительно формировались зоны Гинье-Престона-Багаряцкого, которые увеличением С длительности старения трансформировались в метастабильные пластинчатые выделения S-фазы (Al₂CuMg). При этом в длину они росли быстрее и после 10-ти часов старения их размеры составляли 205×10 нм при достижении на порядок большей плотности (количества) в объеме.

Обнаружено, что сплав, вне зависимости от исходного состояния, приобретал при КВД однотипную фрагментированную наноструктуру преимущественно в результате развития процессов фрагментации и непрерывной динамической рекристаллизации (Рис. 1). Наименьший размер фрагментов (~75 нм) фиксировали в предзакаленном сплаве. Вблизи частиц Т-фазы наблюдали кристаллиты, которые имели ПЭМ контраст, характерный для сильнодеформированных нанозерен с неравновесными границами, свидетельствуя об активизации (стимулировании) частицами прерывистой

динамической рекристаллизации. С формированием и ростом выделений S-фазы при старении доля и размеры разориентированных областей увеличивались. При этом вблизи частиц Т-фазы размеры таких областей уменьшались, приводя к формированию лишь отдельных кристаллитов. В результате, в состаренных состояниях сплава формировалась менее развитая, но более однородная деформационная структура с более равномерным распределением дислокаций, ячеек и границ. Повышение плотности и размеров продуктов старения, и связанное с ним затруднение перераспределения дислокаций (прежде всего, вследствие увеличения количества неперерезаемых частиц) отрицательно сказались на процессах как прерывистой, так и непрерывной рекристаллизации.

Рисунок 1 - ПЭМ структура сплава после КВД (а,б,д,е) и последующего старения при 100°С, 100 ч (в,г,ж,з): предварительно закаленный (а-г) и состаренный при 190°С, 10 ч (д-з).

Установлено, что микротвердость исходно закаленного сплава была около 125 НV и после 10 часов старения достигла 165 HV (Табл. 1). При этом при старении до 5 часов дисперсионное твердение лишь компенсировало «потери» твердости от снижения твердорастворного упрочнения, а с выделением и ростом метастабильных фаз при 10 часовом старении, заметно их превышало. Судя по данным, представленным в таблице 1, твердость сплава во всех состояниях после КВД была близка и не зависела как от исходной твёрдости, так и от особенностей формирующейся структуры. При этом наиболее сильно упрочнения. С увеличением же длительности старения прирост твердости при КВД уменьшался. Такое поведение сплава, вероятно, обусловлено процессами, протекавшими на уровне взаимодействия подвижных дислокаций с кластерами, содержащими атомы Си и Mg – фрагментами зон и метастабильных фаз, формирующимися при КВД. Такая точка зрения была высказана и обоснована в работе [8], а представленные в настоящем исследовании результаты выступают в ее поддержку.

При пост-деформационном старении сплав во всех состояниях, за исключением предварительно состаренного на максимальную твердость, дополнительно упрочнялся на 15-35 HV (Табл. 1). Сильнее других упрочнялся исходно закаленный сплав. Так 526

после его 50-ти часового пост-КВД старения была зафиксирована твердость на уровне чуть меньше 300 HV, которая является рекордной для КВД обработанных дисперсионно-твердеющих алюминиевых сплавов. Последующее разупрочнение сплава при старении было вызвано как коагуляцией упрочняющих фаз, так и активизацией процессов возврата и рекристаллизации. Об этом свидетельствовал ПЭМ анализ, показавший, что структура всех КВД состояний сплава в результате постдеформационного старения трансформировалась в более однородную и равновесную наноструктуру (Рис. 1). Причем более активно этот процесс протекал в сплаве с наиболее крупными выделениями S-фазы, сформированными перед КВД.

Состояние		Микротвердость, Ну				
		Закалка	+ Старение при 190°С			
			1ч	2ч	5ч	10ч
Исходное		125	130	120	135	165
КВД		270	250	270	245	275
КВД и старение при 100°С	24ч	280	280	280	275	275
	48ч	295	270	280	270	270
	78ч	290	285	280	270	270
	100ч	285	280	285	280	275

Таблица 1 - Микротвердость сплава Д16 на различных стадиях обработки.

Работа выполнена при финансовой поддержке Российского научного фонда (проект №16-19-10152). Исследования проведены на базе центра коллективного пользования ИПСМ РАН «Структурные и физико-механические исследования материалов».

Литература

[1] M.Kh. Rabinovich, M.V. Markushev, M.Yu. Murashkin // Mater. Sci. Forum 243 (1997) 591.

[2] C.Y. Barlow, N. Hansen, Y.L. Liu // Acta Mater. 50 (2002) 171.

[3] S.V. Krymskiy, O.Sh. Sitdikov, M.V. Markushev // AIP Conf. Proc. 1785 (2016) 040030.

[4] M.V. Markushev, Yu.L. Burdastykh, S.V. Krymskiy, O.Sh. Sitdikov // Lett. Mat. 7 (2017) 101.

[5] M.V. Markushev, E.V. Avtokratova, S.V. Krymskiy, O. Sh. Sitdikov // J. Alloys Comp. 743 (2018) 773

[6] S.V. Krymskiy, O.Sh. Sitdikov, E.V. Avtokratova, M.Yu. Murashkin, M.V. Markushev // Rev. Adv. Mater. Sci. 31 (2012) 145.

[7] S.V. Krymskiy, E.V. Avtokratova, O.Sh. Sitdikov, M.V. Markushev // Lett. Mat. 1 (2012) 45.

[8] Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink // Mater. Sci. Eng. A 627 (2015) 10.