Список использованных источников

- 1. Лыков, А.В. Теория сушки / А.В. Лыков. Москва: Энергия, 1968, 469 с.
- 2. Красников, В. В. Кондуктивная сушка / В. В. Красников. Москва: Энергия, 1973, 365 с.
- Филоненко, Г.К. Сушильные установки / Г.К. Филоненко, П.Д. Лебедев. Москва: Госэнергоиздат, 1952, - 256 с.
- Ольшанский, А. И. Некоторые закономерности кинетики сушки влажных материалов // А. И. Ольшанский, В. И. Ольшанский, Е. Ф. Макаренко, -Инженерно-физический журнал / Минск – июль-август 2007. – т. 80, – № 4, – С. 143-146.
- Куц, П.С. Некоторые закономерности тепловлагообмена и приближенные методы расчета кинетики процесса сушки влажных материалов // П.С. Куц, А. И. Ольшанский, - Инженерно-физический журнал / Минск –1977. – т. 32, – № 6, – С. 1007-1014.

SUMMARY

Methods of calculation process of dryings of damp materials for the period of the falling speed, based on the generalized characteristics process of dryings - relative speed of the drying, generalized and relative time of drying are considered.

УДК 539.3

СВОБОДНЫЕ КОЛЕБАНИЯ МНОГОСЛОЙНОЙ НЕКРУГОВОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ, СОСТОЯЩЕЙ ИЗ ВЯЗКОУПРУГИХ СЛОЕВ

Е.А. Корчевская

Постановка задачи. Рассматривается тонкая некруговая цилиндрическая оболочка постоянной длины *L*, состоящая из *N* изотропных вязкоупругих слоев, характеризующихся толщиной h_k , модулем Юнга E_k , плотностью ρ_k и коэффициентом Пуассона v_k .

В качестве исходных могут быть использованы уравнения [1], основанные на гипотезах, сформулированных Э.И. Григолюком и Г.М. Куликовым [2], которые отличаются от классических уравнений полубезмоментной теории тонких оболочек наличием дополнительных слагаемых, учитывающих поперечные сдвиги слоев. Отбрасывание последних приводит к уравнениям для изотропной оболочки с физическими характеристиками, равными осредненным по толщине параметрам слоистой исходной оболочки и может давать существенные погрешности при расчетах:

$$\frac{Eh^{3}}{12(1-\nu^{2})}\eta_{3}\left(1-\frac{\theta h^{2}}{b}\Delta^{*}\right)\Delta^{*}\Delta^{*}\chi^{*} + \frac{1}{R_{2}(\alpha_{2})}\frac{\partial^{2}F^{*}}{\partial\alpha_{1}^{2}} - \rho h\Omega^{2}W^{*} = 0,$$

$$\Delta^{*}\Delta^{*}F^{*} - \frac{Eh}{R_{2}(\alpha_{2})}\frac{\partial^{2}W^{*}}{\partial\alpha_{1}^{2}} = 0,$$

$$W^{*} = \left(1-\frac{h^{2}}{b}\Delta^{*}\right)\chi^{*}.$$
(1)

Здесь Δ^* – оператор Лапласа в криволинейной системе координат α_1 , α_2 , *E*, ν , ρ –осредненные модуль Юнга, коэффициент Пуассона и плотность материала

соответственно, h – толщина оболочки, F^* , χ^* – функции напряжений и перемещений, \boldsymbol{W}^* – нормальный прогиб, Ω – частота собственных колебаний, $f_0(\alpha_3), f_k(\alpha_3), g(\alpha_3)$ – функции, зависящие от поперечной координаты $\alpha_3,$ параметры η_3 , θ , b, γ_k , η_1 , η_2 , π_{1k} , π_{2k} , π_{3k} , ξ_k , ζ_n , c_{13} , c_{12} , λ_{kn} , λ_k , G_k ,

 $q_{44}, \widetilde{G}_{k}, \widetilde{c}_{k}, c_{k}$ определяются по формулам [1, 2]:

$$h = \sum_{k=1}^{N} h_{k} \quad v = \left(\sum_{k=1}^{N} \frac{E_{k} h_{k} \tilde{c}_{k}}{1 - v_{k}^{2}}\right)^{-1} \sum_{k=1}^{N} \frac{v_{k} E_{k} h_{k} \tilde{c}_{k}}{1 - v_{k}^{2}} \quad E = \frac{1 - v^{2}}{h} \left(\sum_{k=1}^{N} \frac{E_{k} h_{k} \tilde{c}_{k}}{1 - v_{k}^{2}}\right)$$
$$\gamma_{k} = \frac{E_{k} h_{k} \tilde{c}_{k}}{1 - v_{k}^{2}} \left(\sum_{k=1}^{N} \frac{E_{k} h_{k} \tilde{c}_{k}}{1 - v_{k}^{2}}\right)^{-1} \quad \rho = \sum_{k=1}^{N} \rho_{k} \varsigma_{k} \quad \theta = 1 - \frac{\eta_{2}^{2}}{\eta_{1} \eta_{3}} \quad b = \frac{12(1 - v^{2})q_{44}}{Eh\eta_{1}}$$
$$\eta_{1} = \sum_{k=1}^{N} \xi_{k}^{-1} \pi_{1k} \gamma_{k} - 3c_{12}^{2}, \quad \eta_{2} = \sum_{k=1}^{N} \xi_{k}^{-1} \pi_{2k} \gamma_{k} - 3c_{13}c_{12},$$

$$\eta_{3} = 4 \sum_{k=1}^{N} \left(\xi_{k}^{2} + 3\zeta_{k-1}\zeta_{k} \right) \gamma_{k} - 3c_{13}^{2} \frac{1}{12} h^{3} \pi_{1k} = \int_{\delta_{k-1}}^{\delta_{k}} g^{2}(\alpha_{3}) d\alpha_{3},$$

$$\frac{1}{12}h^{3}\pi_{2k} = \int_{\delta_{k-1}}^{\delta_{k}} (\alpha_{3})d\alpha_{3} \quad \frac{1}{2}h^{2}\pi_{3k} = \int_{\delta_{k-1}}^{\delta_{k}} g(\alpha_{3})d\alpha_{3}, \quad h\zeta_{k} = h_{k}, \quad h\zeta_{n} = \delta_{n} (n=0, n)$$

$$c_{13} = \sum_{k=1}^{N} (\zeta_{k-1} + \zeta_{k}) \gamma_{k}, \quad c_{12} = \sum_{k=1}^{N} \xi_{k}^{-1} \pi_{3k} \gamma_{k},$$
$$\lambda_{kn} = \int_{\delta_{k-1}}^{\delta_{k}} f_{k}(\alpha_{3}) f_{n}(\alpha_{3}) d\alpha_{3}, \quad (n = 0, k)$$

$$\lambda_{k} = \int_{\delta_{k-1}}^{\delta_{k}} f_{0}^{2}(\alpha_{3}) d\alpha_{3}, f_{0}(\alpha_{3}) = \frac{1}{h^{2}} (\alpha_{3} - \delta_{0}) (\delta_{N} - \alpha_{3})$$
$$g(\alpha_{3}) = \int_{0}^{\alpha_{3}} f_{0}(\alpha_{3}) d\alpha_{3}$$

$$\lambda_{k} = \int_{\delta_{k-1}} f_{0}^{-}(\alpha_{3})d\alpha_{3}, f_{0}(\alpha_{3}) = \frac{1}{h^{2}}(\alpha_{3} - \delta_{0})(\delta_{N} - \alpha_{3})$$

$$g(\alpha_{3}) = \int_{0}^{\alpha_{3}} f_{0}(\alpha_{3})d\alpha_{3}$$

$$f_{k}(\alpha_{3}) = \frac{1}{h_{k}^{2}}(\alpha_{3} - \delta_{k-1})(\delta_{k} - \alpha_{3})$$

$$G_{k} = E_{k}/[2(1 + v_{k})], \tilde{G}_{k} = G_{k}\tilde{C}_{k},$$

$$q_{44} = \left[\sum_{k=1}^{N} \left(\lambda_{k} - \frac{\lambda_{k0}^{2}}{\lambda_{kk}}\right)\right]^{2} / \left[\sum_{k=1}^{N} \left(\lambda_{k} - \frac{\lambda_{k0}^{2}}{\lambda_{kk}}\right)\tilde{G}_{k}^{-1}\right] + \sum_{k=1}^{N} \frac{\lambda_{k0}^{2}}{\lambda_{kk}}\tilde{G}_{k},$$

Вестник УО ВПУ

ornacito [3] peuchie Synemia

$$\widetilde{c}_k = 1 - c_k, \quad c_k = \int_{\Omega} R_k(s) e^{-i\Omega s} ds$$

В формулах (2) $R_k(s)$ – ядро релаксации напряжений материала для *k*-ого слоя, а $\Omega = \omega + i\alpha$, где $i = \sqrt{-1}$, ω – фундаментальная частота свободных колебаний, α – декремент колебаний.

Перепишем уравнения (1) в безразмерном виде:

$$\begin{cases} \varepsilon^{4} \left(1 - \varepsilon^{3} \tau \Delta\right) \Delta^{2} \chi + k(\varphi) \frac{\partial^{2} F}{\partial s^{2}} - \lambda \left(\chi - \varepsilon^{2} \kappa \Delta \chi\right) = 0, \\ \varepsilon^{4} \Delta^{2} F - k(\varphi) \frac{\partial^{2}}{\partial s^{2}} \left(\chi - \varepsilon^{2} \kappa \Delta \chi\right) = 0, \end{cases}$$

$$(3)$$

(2)

где $\epsilon^8 = h^2 \eta_3 / [12R^2(1-\nu^2)]$ — малый параметр, характеризующий тонкостенность оболочки, Δ — оператор Лапласа в криволинейной системе координат $\phi = \alpha_2 / R$ и $s = \alpha_1 / R$, $F = F^* / (\epsilon^4 EhR^2)$, $\chi = \chi^* / R_-$ безразмерные функции напряжений и перемещений соответственно, $\lambda = (\rho R^2) / (E\epsilon^4) \Omega^2$ — искомый частотный параметр, $k(\varphi)$ — переменная кривизна. Здесь τ , κ — параметры, характеризующие поперечные сдвиги:

$$K/\pi^2 = \varepsilon^2 \kappa$$
 $K\theta/\pi^2 = \varepsilon^3 \tau$ к, τ_{-1} при $\varepsilon \to 0$, где $K = \pi^2 h^2/(bR^2)$.

Граничные условия имеют вид:

$$F = \Delta F = \chi = \Delta \chi = \Delta^2 \chi = 0, \text{ при } s = 0, l, \ l = L/R.$$
(4)

Задача состоит в определении параметра λ , для которого краевая задача (3), (4) имеет ненулевое решение.

Построение решения. Считаем, что локализация собственных колебаний происходит в окрестности некоторой "слабой" образующей $\phi = \phi_0$. Введем растяжение масштаба в окрестности этой образующей:

 $\xi = (\varphi - \varphi_0)\varepsilon^{-1/2}$

Согласно [3] решение будем искать в виде:

$$\chi = \chi_m(\varphi) \sin(m\pi s/l) \quad F = \Phi_m(\varphi) \sin(m\pi s/l) \quad m = 1, 2, \dots$$

где

34TEGCKL

$$\{\chi_{m}, \Phi_{m}\} = \sum_{j=0}^{\infty} \varepsilon^{j/2} \{\chi_{mj}(\xi), f_{mj}(\xi)\} \exp\{i\left(\varepsilon^{-1/2}q\xi + \frac{1}{2}a\xi^{2}\right)\}, \text{ Im } a > 0, (6)$$

$$\lambda = \lambda_{0} + \varepsilon\lambda_{1} + \varepsilon^{2}\lambda_{2} + ..., \qquad (7)$$

$$k(\varphi) = k(\varphi_{0}) + \varepsilon^{1/2}k'(\varphi_{0})\xi + \frac{1}{2}\varepsilon k''(\varphi_{0})\xi^{2} + ... \qquad (9)$$

В выражении (6) параметр q характеризует изменяемость решения в окружном направлении, а мнимая часть числа a, характеризующего скорость затухания

амплитуды волн при удалении от линии $\phi = \phi_0$, должна быть положительной. Функции χ_{mj} , f_{mj} являются полиномами по ξ.

Подставляя (5)-(8) в (3), (4), получим последовательность уравнений:

$$\sum_{k=0}^{j} \mathbf{A}_{k} \mathbf{X}_{j-k} = 0 \qquad j = 0.12$$

относительно вектор-функции $\mathbf{X}_{j} = (\chi_{mj}, f_{mj})^{\mathrm{T}}$

Матрица А₀ имеет вид:

HANDERRE CREDENNE OVAVI

$$A_{0} = \begin{bmatrix} q^{4} - \lambda_{0} (1 + \kappa q^{2}) & -k(\varphi_{0})(\pi m/l)^{2} \\ k(\varphi_{0})(\pi m/l)^{2} (1 + \kappa q^{2}) & q^{4} \end{bmatrix}$$

а элементы матрицы \mathbf{A}_{j} при $j \geq 1$ выражаются через производные по q и *j* - го порядка элементов матрицы А₀ [3].

Из условия существования нетривиального решения системы (9) при j=0находим формулу для частотного параметра нулевого приближения:

$$\lambda_0(q,\varphi_0 m) = q^4 / (1 + \kappa q^2) + (k^2(\varphi_0)(\pi m/l)^4) / q^4$$
(10)

Минимизируя $\lambda_0(q, \phi_0, m)$ по q и ϕ_0 , из условий

$$\partial \lambda_0 / \partial q = \partial \lambda_0 / \partial \phi_0 = 0$$
⁽¹¹⁾

0,1,2, ... (9)

находим число q^0 и "наиболее слабую" образующую Φ_0^0 Однородная задача в нулевом приближении имеет решение в виде:

 $\mathbf{X}_{0}\left(\boldsymbol{\xi}\right) = P_{0}\left(\boldsymbol{\xi}\right)\mathbf{Y}^{0}$

где $P_0(\xi)$ - неизвестный полином, а $\mathbf{Y}^0 = (1, -A_{011}/A_{012})$.

j = 1 система уравнений (9) является неоднородной. Но при условиях При (10), (11) она обращается в систему тождеств.

Условие совместности системы (9) при j=2 приводит к соотношению для вычисления параметра а:

$$a = i \left(\lambda_{\varphi\varphi}^{0} / \lambda_{qq}^{0} \right)^{1/2}$$

а также к уравнению относительно $P_0(\xi).$

сительно
$$P_0(\xi)$$
:
 $\frac{d^2 P_0}{d\xi^2} + ia \left[2\xi \frac{dP_0}{d\xi} + P_0 \right] + \frac{2\lambda_1}{\lambda_{qq}^0} P_0 + \frac{2\pi q^6}{\lambda_{qq}^0 (1 + \kappa q^2)} P_0 = 0,$ (12)

 $\lambda^0_{\phi\phi}$ и λ^0_{qq} – вторые производные частотного параметра нулевого гле приближения по соответствующим параметрам при $\phi = \phi_0^0$, $q = q^0$

$$\lambda_{1} = \lambda_{1}^{(n)} = (1/2 + n)\sqrt{\lambda_{qq}^{0}\lambda_{\phi\phi}^{0}} + \tau q^{6}/(1 + \kappa q^{2})$$

уравнение (12) имеет

решение в виде полинома Эрмита степени n:

При

$$P_0(\xi) = H_n(\vartheta) \quad \vartheta = \sqrt{c\xi} \quad c = -ia$$

Пример. В качестве примера рассмотрим тонкую некруговую трехслойную цилиндрическую оболочку эллиптического сечения с полуосями *b*=0,03 м, *a*=0,015 м (*a*<*b*), постоянной длины *L*=0,45 м. В данном случае "наиболее слабыми" будут две образующие, проходящие через точки, где радиус кривизны поперечного сечения наименьший. Первый и третий слои имеют одинаковую толщину *h*₁=*h*₃ и

изготовлены из керамики с модулем Юнга $E_1 = E_3 = \frac{1,52 \cdot 10^{12}}{\Gamma a}$ Па, плотностью $\rho_1 = \rho_3 = 2510$ кг/м³ и числом Пуассона $\nu_1 = \nu_3 = 0,3$ Межслойный заполнитель изготовлен из фторопласта с $E_2 = 2,34 \cdot 10^8$ Па, $\rho_2 = 2150$ кг/м³, $\nu_2 = 0,3$

Будем считать здесь, что керамические слои подчиняются закону упругих деформаций, а межслойный заполнитель — закону вязкоупругих деформаций. Тогда $R_1 = R_3 \equiv 0$, а ядро скорости релаксации напряжений для фторопласта [4]

$$R_2 = 0.02366 \,\mathrm{e}^{-3,33 \cdot 10^{-4} t} t^{-0.95}$$

Выполняя преобразование Лапласа функции R₂, находим:

$${}_{2} = \frac{0,02366 \,\Gamma(0,05)}{\left(i\omega - \alpha + 3,33 \cdot 10^{-4}\right)^{0,05}}$$

где Г(х) – Гамма- функция.

На рисунках 1,2 представлены графики параметров ω , α , как функций относительной толщины заполнителя $h_2/h_{\rm при}$ $h_1 = h_3 = 0,0001_{\rm M}$ м и различных значениях *m*. Цифрами 1, 2, 3 отмечены кривые, отвечающие волновым числам

m=1, 2, 7 соответственно.

Рисунок 1 - Собственная частота колебаний

Рисунок 2 - Декремент колебаний

В рассмотренном диапазоне изменения $0.2 < h_2/h \le 0.73$ собственная частота ω возрастает с ростом h2. Как и ожидалось, увеличение толщины заполнителя также приводит к росту декремента колебаний а.

Результаты работы могут быть использованы при проектировании тонкостенных элементов машин, а также габаритных тонкостенных инженерных сооружений в промышленном строительстве, летательных аппаратов и подводных тонкостенных объектов.

Список использованных источников

- 1. Ботогова, М.Г. Свободные колебания слоистых вязкоупругих цилиндрических оболочек / М.Г. Ботогова, Г.И. Михасев, Е.А. Корчевская // Вестн. Полоц. гос. ун-та. Сер. С, Фунд. науки. Механика. - 2006. - № 10. - С. 125-133.
- Григолюк, Э.И. 2. Многослойные армированные оболочки: расчет пневматических шин / Э.И. Григолюк, Г. М. Куликов. - М.: Машиностроение, 1988. - 288 c.
- 3. Товстик, П. Е. Устойчивость тонких оболочек: асимптотические методы / П.Е. Товстик. – М.: Наука. Физматлит, 1995. – 320 с.
- 4. Старовойтов, Э.И. Локальные и импульсные нагружения трехслойных элементов конструкций / Э.И. Старовойтов, А.В. Яровая, Д.В. Леоненко. Гомель: БелГУТ, 2003. - 367 с.

SUMMARY

Using the asymptotic complex WKB- method free vibrations of the laminated composite non-circular cylindrical shell with viscoelastic filler is investigated. The natural vibration frequencies were found.

УДК 620.179

ФОРМИРОВАНИЕ АКУСТИЧЕСКОГО ПОЛЯ ПРЕОБРАЗОВАТЕЛЯ ПОДПОВЕРХНОСТНЫХ ВОЛН В ОБЪЕКТАХ С ГАЛТЕЛЬНЫМИ ПЕРЕХОДАМИ

А.Р. Баев, М.В. Асадчая, К.А. Филиппов

Для значительного числа объектов тепловой энергетики, химического машиностроения и других отраслей промышленности характерно наличие таких геометрических элементов, как различные выступы, радиусные переходы

CHTOT