ИССЛЕПОВАНИЕ ФИЛЬТРУЮШИХ СВОЙСТВ ТРИКОТАЖА

Петрова В.А. (ВГТУ), Вегера А.И. (ПГУ), Корнышева С.В. (НПО «Полимир»)

Создание трикотажных материалов для фильтрования суспензий является новым малоразработанным направлением. В последнее время особое внимание специалисты уделяют созданию многослойных трикотажных фильтров.

Нами разработана технология вязания кулирного двухслойного, а с точки зрения фильтрования трехслойного трикотажа [1], которая позволяет получать фильтровальную перегородку толщиной 1,5 - 2 мм с гладкой равномерной структурой и максимальным заполнением слоев. (рис.1). Сложная структура переплетения дает возможность сочетать различные виды нитей, прочно закрепляет каждую нить, предотвращая раздвижку, и дает возможность регулировать толщину слоев. Исходя из этих возможностей, были изготовлены 11 вариантов трикотажных полотен с различной глубиной кулирования, величиной зева между игольницами и заправкой нитей. Все фильтровальные полотна изготовлены из полиэфирных текстурированных нитей (ТУ РБ 00204079.013-96; ТУ РБ 00204079.047-95; ТУ РБ 002204079.080-98) с различным сочетанием толщин нитей по слоям.

Для оценки фильтрующих свойств, трикотажных полотен были выбраны следующие показатели: пористость, распределение пор по размеру, проницаемость, гидравлическое сопротивление.

Пористость, т.е. отношение объема пор к общему объему материала определялось расчетным методом по формуле:

$$\varepsilon = \frac{\gamma_{nasc} - Q_{o6}}{Q_{o6}}$$

 $\gamma_{\text{лавс}}$ - плотность лавсана, $\gamma_{\text{лавс}}$ = 1,38 - 1,4 кг/ м ³; $Q_{\text{лавс}}$ - объемная плотность образца, кг/м³:

$$Q''t = \frac{m}{V''t}$$

где m - масса образца, кг; $V_{c\delta}$ - объем образца.

$$V = S \times H$$

где Н -толщина, м;

S - площадь образца, м²

Для определения размеров пор использован наиболее распространенный капиллярный метод.

Размер пор фильтрующего материала:

$$d_n = \frac{2\rho \times \cos \alpha}{P}$$

где ρ — поверхностная плотность, г/ м 2 ;

α — угол смачивания образца жидкостью;

Р --- давление воздуха перед фильтрующим материалом, Па.

Наименьшее давление, фиксируемое при появлении первого пузырька воздуха, соответствует максимальному диаметру пор фильтрующего материала d_{в.} Давление, зафиксированное при обильном появлении пузырьков воздуха - среднему диаметру пор.

Проницаемость- свойство пористого материала пропускать через себя жидкость или газ под действием приложенного градиента давления, отражает все свойства пористой среды.

Проницаемость материала выражается коэффициентом проницаемости и определялась по методике [2], основанной на измерении объема фильтрата, полученного в течении определенного времени при соответствующей разности давлений и поверхности фильтрования.

Коэффициент проницаемости выведен из формулы Дарси [3] и рассчитывался по формуле:

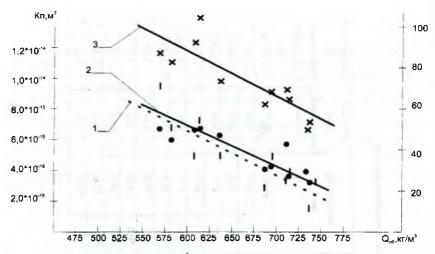
$$K_n = \frac{Q \times \mu_M \times H}{S \times \Delta P}$$

где Q - пропускная способность, м ³/с;

μм - вязкость жидкости, Па • с;

ΔР - перепад давления при течении жидкости через материал фильтра, Па.

Для определения гидравлического сопротивления фильтровальных материалов использована методика [2].


Результаты экспериментов и расчетов представлены в таблице 1. Как следует из таблицы 1, изменение плотностей и/или величины зева отражается на изменении поверхностной плотности и толщины трикотажа, что влечет изменение и объемной плотности. Анализ влияния поверхностной и объемной плотности трикотажного полотна на фильтрующие характеристики трикотажа показал, что зависимость проницаемости и размера пор от объемной плотности прослеживается более четко, чем та же зависимость от поверхностной плотности, т.к. в первой отражается влияние заправочных параметров на изменение толщины трикотажа. Как видно из рисунка 1, четко прослеживается линейная зависимость между объемной плотностью, т.е. с ростом объемной плотности пористость уменьшается. Это связано, вероятнее всего, с уменьшением диаметра пор, т.к. с увеличением объемной плотности, как видно из того же рисунка, уменьшаются как максимальный, так и средний диаметры пор, причем вполне заметна корреляционная зависимость между ними.

Проницаемость трикотажного полотна тесно взаимосвязана с такой характеристикой, как скорость фильтрования, а следовательно, с ростом проницаемости увеличивается производительность фильтровального оборудования.

Однако при этом, как видим, увеличиваются размеры пор и снижается тонкость фильтрации.

Табл. 1. Технологические и физические характеристики трикотажных полотен

Условное обозначение варианта	Число пет. рядов на 10 см	Число пет. столбиков на 10 см N с	Поверх- ностная плот- ность р, г/м²	Тол- щина Н, мм	Объемная плотность Q об, кг/м ³	Порис- тость Е ₁ , м ³ /м ³	Размер пор d _о , мкм		Коэффи- циент проницаемо сти Кn,	ое сопротивлени е перегородки R_{Φ^n} .
							max	средний	1x10 ⁻¹⁵ ,m ²	1x10 ⁸ ,1/m
7.0.17	215	70	1066	1,76	606	0,564	93,5	49,5	5,86	3,00
36.0.14	260	70	1117	1,57	712	0,488	68,5	40,5	3,56	4,41
36.0.17	240	70	1044	1,64	638	0,541	75,5	47,4	5,09	3,09
37.0.17	230	70	1024	1,67	613	0,559	103,3	50,3	7,23	2,31
38.0.18	220	70	1053	1,52	688	0,505	61,0	30,5	2,51	5,21
40.0.21	235	70	964	1,66	579	0,583	81,7	44,5	7,04	2,49
40.0.25	215	70	983	1,73	568	0,591	84,8	50,3	9,44	1,83
49.0.18	230	70	1186	1,62	733	0,473	50,0	24,6	1,23	1,26
49.0.21	220	70	1064	1,54	692	0,502	68,5	32,3	4,93	3,21
58.0.18	250	70	1181	1,60	737	0,470	54,3	22,4	2,34	7,38
59.0.18	240	70	1100	1,54	713	0,487	68,5	28,4	3,65	4,09

пористость, м²; 2 - средний диаметр пор, мкм;
максимальный диаметр пор, мкм.

Рис. 1. Зависимость проницаемости и диаметра пор трикотажа от объемной плотности

Установлено, что с ростом поверхностной и объемной плотности гидравлическое сспротивление в исследуемом диапазоне растет незначительно. Однако рост плотностей уменьшает размеры пор и может значительно улучшить фильтровальные качества трикотажного полотна при незначительном росте гидравлического сопротивления.

Литература:

- №1096318 СССР, МКИ ЗД04В 1/00. Кулирный двухслойный трикотаж./ Петрова В.А., Мурашко Н.В., Жбанков В.С. (СССР),№35 15880/28-12; Заявлено 30.11.82, Опубл.07.06.84 Бюл.№21
- 2. Flood I.E., Porter H.F., Rennie F. W. Filtration prace todau, chem. Eng. 73, 13, 1966.
- 3. Пискарев И.В. Фильтровальные ткани. Изд. АН СССР, 1963.