УДК 677.074:684

## ОПТИМИЗАЦИЯ ПРОЦЕССА ТКАЧЕСТВА И ЗАПРАВОЧНОЙ ПЛОТНОСТИ МЕБЕЛЬНОЙ ТКАНИ

Тулинов Н.А., Иванова Т.П. (ВГТУ)

Мебельно-декоративные ткани относятся к самой трудоемкой ассортиментной группе, что обусловлено, прежде всего, строением и условиями выработки тканей. Строение, эксплуатационные свойства, структура мебельных тканей зависят от многих параметров, и в первую очередь от сырьевого состава нитей и их свойств, линейной плотности нитей основы и утка, плотности ткани по основе и утку.

Для оптимизации процесса ткачества мебельной ткани был применен полный факторный эксперимент (ПФЭ), который реализует все возможные повторяющиеся комбинации уровней исследуемых факторов и позволяет по знаку и величине коэффициентов регрессии судить о силе и характере влияния факторов на выходной параметр. Нами была использована матрица Коно для двух факторов. Уровни и интервалы варьирования факторов представлены в таблице 1, матрица планирования Коно (Ко2) представлена в таблице 2.

Таблица 1. Уровни и интервалы варьирования факторов

| Факторы                                                          | Уровн | и варьиро | вания | Интервал варьирования |
|------------------------------------------------------------------|-------|-----------|-------|-----------------------|
|                                                                  | -1    | 0         | +1    |                       |
| X <sub>1</sub> -линейная плотность пряжи Т <sub>v1</sub> , текс. | 88    | 100       | 112   | 12                    |
| X <sub>2</sub> -плотность ткани по утку Р <sub>и</sub> нит/10см. | 190   | 220       | 250   | 30                    |

Остальные параметры строения ткани, как, например, плотность ткани по основе, линейная плотность нитей основы, переплетение нитей в ткани, линейная плотность второго утка, не изменялись. Заправочные параметры ткацкого станка в ходе эксперимента фиксировались на постоянном уровне.

Таблица 2. Матрица планирования Коно (Ког)

| Nº n/n. | , ,                   | кодирован-<br>ачениях |     | натураль-<br>ачениях | Рандомизированный порядок повторных опытов |    |    |  |
|---------|-----------------------|-----------------------|-----|----------------------|--------------------------------------------|----|----|--|
|         | <b>X</b> <sub>1</sub> | X <sub>2</sub>        | Χ,  | X <sub>2</sub>       | 1                                          | 2  | 3  |  |
| 1       | 0                     | 0                     | 100 | 220                  | 17                                         | 14 | 25 |  |
| 2       | +                     | +                     | 112 | 250                  | 21                                         | 23 | 18 |  |
| 3       | -                     | +                     | 88  | 250                  | 22                                         | 3  | 9  |  |
| 4       | -                     | -                     | 88  | 190                  | 26                                         | 19 | 5  |  |
| _5      | +                     | -                     | 112 | 190                  | 8                                          | 13 | 27 |  |
| _6      | +                     | 0                     | 112 | 220                  | 2                                          | 12 | 6  |  |
| 7       | 0                     | +                     | 100 | 250                  | 24                                         | 10 | 1  |  |
| 8       | -                     | 0                     | 88  | 220                  | 7                                          | 20 | 11 |  |
| 9       | 0                     | -                     | 100 | 190                  | 4                                          | 16 | 15 |  |

В качестве выходных параметров были приняты показатели ткани: поверхностная плотность, разрывная нагрузка и разрывное удлинение, уработка нитей основы и утка, стойкость к истиранию. В таблице 3 приведены результаты испытания.

| Teoritide 5. 1 esynamental denamental minand |                                       |                           |                                                   |                       |          |                  |                  |                              |                       |                         |
|----------------------------------------------|---------------------------------------|---------------------------|---------------------------------------------------|-----------------------|----------|------------------|------------------|------------------------------|-----------------------|-------------------------|
| Об-<br>ра-<br>зец                            | Р <sub>у.</sub><br><u>нит</u><br>10см | Т <sub>у.</sub> ,<br>текс | М <sub>м</sub> <sup>2</sup> ,<br>г/м <sup>2</sup> | l <sub>o</sub> ,<br>% | ly.<br>% | R <sub>o</sub> , | R <sub>y</sub> , | <b>a</b> <sub>0</sub> ,<br>% | a <sub>y</sub> ,<br>% | Истира-<br>ние,<br>цикл |
| 1                                            | 190                                   | 88                        | 395                                               | 16.2                  | 8.6      | 905              | 693              | 7                            | 2.7                   | 12879                   |
| 2                                            | 220                                   | 88                        | 412                                               | 17.3                  | 7.8      | 1022             | 892              | 8.6                          | 2.9                   | 12133                   |
| 3                                            | 250                                   | 88                        | 427                                               | 18                    | 8.1      | 957              | 1044             | 9                            | 3.1                   | 12267                   |
| 4                                            | 190                                   | 100                       | 435                                               | 16                    | 9.3      | 897              | 806              | 7.7                          | 2.5                   | 14112                   |
| 5                                            | 220                                   | 100                       | 444                                               | 15.8                  | 8.1      | 1037             | 995              | 8.7                          | 2.6                   | 13038                   |
| 6                                            | 250                                   | 100                       | 460                                               | 15.3                  | 8        | 945              | 1096             | 8.6                          | 2.7                   | 12844                   |
| 7                                            | 190                                   | 112                       | 459                                               | 18.3                  | 9.7      | 921              | 851              | 8.1                          | 2.8                   | 11875                   |
| 8                                            | 220                                   | 112                       | 477                                               | 16.9                  | 8.3      | 1030             | 1029             | 8.8                          | 2.8                   | 10473                   |

Таблица 3. Результаты испытания ткани

В результате обработки данных эксперимента с помощью пакета программы Statistica for Windows и исключения незначимых коэффициентов регрессии были получены модели, описанные уравнениями регрессии:

936

1121

8.3

2.9

10236

7.8

- для поверхностной плотности

112

492

15.4

$$Y_1$$
=411,0+8,33  $X_1$ +30  $X_2$  -  $X_1X_2$  - 4,333  $X_2^2$ 

- для уработки нитей основы

$$Y_2=8.7+0.1X_1+0.516 X_2-0.45X_2X_1-0.583X_2^2$$
;

- для уработки нитей утка

9

250

$$Y_3$$
=2.599 - 0.033  $X_1$ +0.116  $X_2$  - 0.075  $X_2X_1$ +0.266 $X_1^2$ ;

- для стойкости ткани к истиранию

$$Y_4=13006.33-782.5X_1-586.5X_2-256.75X_2X_1-1687.5X_1^2+487.5X_2^2$$
;

- для разрывной нагрузки по основе

$$Y_5 = 1029.66 + 19.166X_2 - 9.25X_2X_1 - 102.833X_2^2$$

- для разрывной нагрузки по утку

$$Y_6 = 990.222 - 62 X_1 + 151.833 X_2 - 20.25 X_1 X_2 - 27.333 X_1^2 - 36.833 X_2^2$$
;

В качестве критериев оптимизации были приняты следующие показатели суровой ткани:

| <ul> <li>- поверхностная плотность, г/м²</li> </ul>       | y₁≤440 ;               |
|-----------------------------------------------------------|------------------------|
| <ul> <li>- уработка нитей основы, %</li> </ul>            | У <sub>2</sub> <8,5;   |
| <ul><li>- уработка нитей утка, %</li></ul>                | У <sub>3</sub> <2,6;   |
| <ul> <li>- стойкость к истиранию ткани, циклов</li> </ul> | Y <sub>4</sub> >13200; |
| <ul> <li>- разрывная нагрузка по основе, Н</li> </ul>     | У <sub>5</sub> >1000;  |
| <ul> <li>- разрывная нагрузка по утку, Н</li> </ul>       | У <sub>6</sub> >850.   |

Поиск оптимальных параметров строения ткани проводился графическим методом путем сопоставления графиков, характеризующих совмещенные двухмерные сечения поверхностей отклика для критериев оптимизации, которые представлены на рисунках 1 и 2.

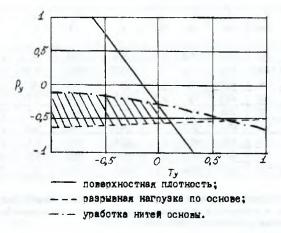



Рис. 1. Совмещенные двухмерные сечения поверхностей отклика разрывной нагрузки по основе, уработки нитей основы, поверхностной плотности ткани



Puc. 2. Совмещенные двухмерные сечения поверхностей отклика разрывной нагрузки по утку, стойкости к истиранию ткани и уработки нитей утка.

Анализируя рисунок 1,можно заметить, что необходимые значения критериев  $Y_1 < 440 \text{ г/м}^2$ ,  $Y_2 < 8.5 %; Y_5 > 1000 Н наблюдаются одновременно только при следующих значениях факторов: -1 < <math>X_1 < 0.1$ ; -0.6 <  $X_2 < -0.15$  Анализируя рисунок 2, можно отметить, что необходимые значения критериев  $Y_4 > 13200$  циклов.  $Y_6 > 850$  Н,  $Y_3 < 2.6\%$ , наблюдается одновременно при следующих значениях факторов: -0,5 <  $X_1 < -0.55$ ; -0,95 <  $X_2 < -0.2$ . Считаем, что наиболее целесообразно за оптимальные принять следующие значения факторов:  $X_1 = -0.25$ ;  $X_2 = -0.45$ . В натуральном выражении оптимальными будут: плотность по утку 204 н/10см; линейная плотность уточной аэродинамической пряжи 97 текс.

При этом показатели качества суровой мебельной ткани характеризуются следующими значениями: поверхностная плотность — 429 г/м²; разрывная нагрузка по основе — 1017 H; разрывная нагрузка по утку — 875 H; стойкость к истиранию - 13530 цикл; уработка нитей основы — 8,1%; уработка нитей утка - 2,5%.

Разработанные оптимальные параметры строения ткани и соответствующие им значения физико-механических свойств взяты за основу для выработки мебельной ткани в условиях АПТП "Оршанский льнокомбинат", составления технического и заправочного расчета, разработки технических условий.

На художественно-техническом совете предприятия данная ткань была принята с оценкой "отлично".