МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Витебский государственный технологический университет»

Методы и средства исследований технологических процессов

Методические указания к лабораторным работам для студентов специальности 1-50 01 01 «Производство текстильных материалов» заочной формы обучения на базе среднего специального образования

> Витебск 2015

УДК 658. 516

Методы и средства исследований технологических процессов:методические указания к лабораторным работам для студентов специальности 1-50 01 01 «Производство текстильных материалов» заочной формыобучения на базе среднего специального образования.

Витебск : Министерство образования Республики Беларусь, УО «ВГТУ», 2014.

Составитель: к.т.н., доц. Скобова Н.В.

В методических указаниях представлены вопросы и практические задания по разделам курса, которые позволяют студентам закрепить теоретические знания, полученные на лекционных занятиях, а также при самостоятельном изучении дисциплины «Методы и средства исследований технологических процессов».

Одобрено кафедрой ПНХВ УО «ВГТУ» «17» сентября 2014 г., протокол № 3.

Рецензент: к.т.н., доц.Соколов Л.Е. Редактор: к.т.н., доц. Гришанова С.С.

Рекомендовано к опубликованию редакционно-издательским советом УО «ВГТУ» «23» октября 2014 г., протокол №7.

Ответственный за выпуск: Кунашев В.В.

Учреждение образования «Витебский государственный технологический университет»

Подписано к печати <u>27.05.15.</u> Формат <u>60х90 1/16.</u> Уч.-изд. лист. <u>3,0.</u> Печать ризографическая. Тираж <u>60</u> экз. Заказ <u>166.</u>

Отпечатано на ризографе учреждения образования «Витебский государственный технологический университет».

Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изделий №1 / 172 от 12 февраля 2014 г. 210035, г. Витебск, Московский пр-т, 72.

Содержание

Введение	4
Лабораторная работа №1. Определение основных числовых характе-	
ристик	5
Лабораторная работа №2. Определение вида дифференциального з кона распределения случайной величины	a- 8
Лабораторная работа №3. Определение статических однофакторных многофакторных корреляционных моделей по данным пассивной эксперимента	и то 10
Лабораторная работа № 4 Разработка однофакторной регрессионной модели по данным пассивного эксперимента	12
Лабораторная работа № 5. Определение регрессионных многофакторных молелей по данным активного эксперимента	14
Лабораторная работа № 6. Изучение неровноты методов анализа волокнистых текстильных пролуктов	17
PVKOROJETRO DO MEDOLISORAUMO DOCDAMMEL STATISTICA for	1/
Windows	19
Список использованных литературных источников	34
Приложение	35
HONOTAL	
CKMY	\$900 .

Введение

Современный технический прогресс текстильной промышленности связан с развитием ее техники и технологии. Для успешного управления технологическими процессами и их оптимизации с целью повышения производительности оборудования и качества продукции уже недостаточно знать отдельные качественные стороны процесса.

Для анализа сложных технологических процессов широко применяются методы экспериментального математического моделирования. Использование методов планирования эксперимента позволяет получать математические модели исследуемого процесса в реализованном диапазоне изменения многих факторов, влияющих на процесс, наиболее экономичным и эффективным способом.

Данные методические указания разработаны с целью освоения методов экспериментальных исследований и являются, по сути, кратким обобщением различных методик, изложенных в ряде специализированных изданий по матеь о эк активь. Бенники технологический Уникерситет матическому планированию экспериментов. Основное внимание уделено корректной обработке данных активных и пассивных экспериментов.

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СОВО-КУПНОСТИ СЛУЧАЙНЫХ ВЕЛИЧИН

Цель: научиться рассчитывать основные числовые характеристики совокупности случайных величин при объеме выборки m<30, оценивать их точность, уметь определять резко выделяющиеся значения в выборке, строить гистограммы и box-диаграммы.

Основные сведения

При измерении свойств продуктов текстильных производств и технологических параметров, как правило, получается совокупность случайных величин, которая может быть определена числовыми характеристиками: средним (математическим ожиданием), дисперсией, коэффициентом вариации, квадратическойнеровнотой.

Расчет оценок математического ожидания, дисперсии и среднего квадратического отклонения для анализируемой выборки осуществляется по следующим формулам:

среднее:
$$\overline{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i$$
, (1.1)

рисперсия :
$$S^2 + \frac{1}{m} = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \overline{Y})^2$$
, (1.2)
ическое отклонение:
 $S + \frac{1}{m} = \sqrt{S^2 + \frac{1}{m}}$, (1.3)
наблюдений.

среднее квадратическое отклонение:

$$S + \frac{1}{2}\sqrt{S^2} + \frac{1}{2}$$

(1.3)

где т – количество наблюдений.

Относительной характеристикой рассеивания случайной величины является коэффициент вариацииCV(Y):

$$CV(Y) = \frac{S(Y)}{\overline{Y}}.$$
(1.4)

Если данная величина выражается в процентах, то она называется квадратической неровнотойС(Y):

$$C(Y) = \frac{S(Y)}{\overline{Y}} \cdot 100 \tag{1.5}$$

Абсолютная и относительная доверительные ошибки, допущенные при оценке математического ожидания, определяются по формулам:

$$\varepsilon(Y) = \frac{2 \cdot S(Y)}{\sqrt{m}},\tag{1.6}$$

$$\delta(Y) = \frac{2 \cdot C(Y)}{\sqrt{m}} \quad . \tag{1.7}$$

But Roci Задаваясь требуемой величиной относительной ошибки $\delta \frac{1}{4}$ (таблица 1.1) и приняв квадратическую неровноту по данным предыдущих опытов, можно рассчитать доверительный объем выборки:

$$m(Y) \ge \left(\frac{u P_D \cdot C(Y)}{\delta(Y)}\right)^2, \tag{1.8}$$

где u{P_D} – квантиль распределения случайной величины (для нормального распределения значения квантиля представлены в таблице 1.2).

Таблица 1.1 – Оценка точности результатов исследований

относительная ошибка δ ${ m I}$,	точность
%	-70
≤ 2	высокая
2÷5	средняя
5 ÷ 10	низкая
> 10	очень низкая (недопустимая)
Тоблица 1.2. Крантили ис	

Таблица 1.2 – Квантиль нормального распределение случайной велич	ины
--	-----

Доверительная вероятность	Квантили $u_{\alpha/2}$
0.90	1.64
0.95	1.96
0.99	2.58
0.9973	3.00
0.999	3.37

Исключение резко выделяющихся экспериментальных данных

Для исключения резко выделяющихся значений используют статистический метод исключения данных, сущность которого заключается в следующем:

• находят в совокупности максимальную и минимальную величины и определяют расчетные значения критерия Смирнова-Грабса:

$$V_{Rmax} = \frac{Y_{max} - \overline{Y}}{S(Y)} \sqrt{\frac{m}{m-1}}$$
(1.9)

$$V_{Rmin} = \frac{\overline{Y} - Y_{min}}{S(Y)} \sqrt{\frac{m}{m-1}}$$
(1.10)

BHT COCKMA IC • сравнивают расчетные значения V_R с табличным V_T (приложение 1): 1) если $V_{Rmax} > V_T$ или $V_{Rmin} > V_T$, то соответствующее резко выделяющееся значение У необходимо исключить из совокупности, а затем повторить расчет оценок \overline{Y} , $S^2(Y)$, S(Y).

2) если $V_{Rmax} < V_T$ или $V_{Rmin} < V_T$, то Y_{max} и Y_{min} не являются резко выделяющимися значениями;

• процедуру повторяют до полного исключения резко выделяющихся значений из совокупности.

Задание

- 1. Организовать (создать) файл данных в программе «STATISTICA» [см. раздел 1 «Руководство по использованию STATISTICA»), заполнить его данными своего варианта [приложение 2].
- 2. Определить основные числовые характеристики (среднее, среднее квадратическое отклонение, дисперсия, среднеквадратическая ошибка) [раздел 2 «Руководство по использованию STATISTICA»] для трех переменных (X1, X2, Y).
- 3. Определить наличие в выборке резко выделяющихся значений. Провести процедуру исключения резко выделяющихся значений, если требуется.
- 4. В тетради рассчитать значение абсолютной и относительной ошибки для переменной Х1.
- 5. Задаваясь величиной относительной ошибки 5% (средняя точность измерений) рассчитать доверительный объем испытаний для переменной Ү.
- 6. Построить гистограмму для переменной У [раздел 3 «Руководство по использованию STATISTICA»].
- 7. Дополнить файл данных [раздел 1 «Руководство по использованию STATIS-TICA»], т.е. добавить после переменной X1 еще две переменные, куда необ-

ходимо внести значения переменной Х1 из двух соседних вариантов (например, если у Вас был 4-й вариант, то возьмите еще значения Х1 из 3-го и 5-го варианта).

- 8. Построить диаграмму размаха Boxplot[раздел 3 «Руководство по использованию STATISTICA»] только для переменных X1 из трех соседних вариантов.
- 9. На основании диаграммы размаха сделать вывод о том, какая из партий пряжи (какой вариант) была наилучшей по выбранному свойству. Вывод запи-547.00C сать в тетрадь.

Лабораторная работа №2

ОПРЕДЕЛЕНИЕ ВИДА ДИФФЕРЕНЦИАЛЬНОГО ЗАКОНА РАСПРЕ-ДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Цель: научиться разбивать выборку на классы, рассчитывать основные числовые характеристики при малом объеме выборки т≤20 и большом объеме т≥50, определять закон распределения случайной величины.

Основные сведения

Наиболее полной характеристикой совокупности случайных величин является дифференциальная или интегральная функции распределения. Для определения вида распределения в исследуемой совокупности при ее объеме m≥50используется критерий Пирсона.

$$\chi^{2}_{\mu a \delta \pi} = \sum_{i=1}^{k} \frac{m_{i} - m_{i}^{T}}{m_{i}}, \qquad (2.1)$$

- теоретическая частота значений в каждом классе, *m_i* – экспериментальная частота значений в каждом классе; k – количество классов, на которые разбита выборка (при m=50k=7).

Из приложения 2 определяем критическое значение критерия Пирсона $\chi^2_{\kappa pum}$ при уровне доверительной вероятности P_D=0,95 и числе степеней свободы f = k - 2.

Если $\chi^2_{\mu a \delta n} \leq \chi^2_{\kappa p u m}$, то анализируемую величину можно считать распределенной по нормальному закону (либо по закону, который проверяется, если расчет ведется в программе STATISTICA). Если $\chi^2_{\mu a \delta \pi} \geq \chi^2_{\kappa pum}$, то необходимо использовать другие функции распределения (лог–нормальную, экспоненциальную, показательную, степенную и т. д.) до нахождения распределения, адекватного исследуемой величины.

Для определения вида распределения в исследуемой совокупности при ее объеме m<50 используется критерий Колмагорова–Смирнова (dp). Расчет критерия проводится в программе STATISTICA [раздел 5 «Руководство по использованию STATISTICA»].

Из приложения 3 выбирают табличное значение критерия Колмагорова– Смирнова dт при условии уровня значимости α=0,05 и объеме выборки m=20.

Если $dp < d_T$, то случайная величина распределена по нормальному закону (либо распределена по тому закону, который проверяется). Если $dp > d_T$, то следует использовать другие функции распределения.

Задание

- 1. Организовать (создать) файл данных в программе «STATISTICA» [см. раздел 1 «Руководство по использованию STATISTICA»], заполнить его данными своего варианта [приложение 8].
- 2. Построить частотную таблицу для анализируемой переменной [см. раздел 4 «Руководство по использованию STATISTICA»], причем в ячейке «Step» указать величину интервала Δ*Y*, с которым выборка разбивалась на классы:

$$\Delta Y = \frac{Y_{max} - Y_{min}}{k}$$

где k – количество классов, на которые разбита выборка(k = 7)

- 3. Построить частотную гистограмму для анализируемой переменной [раздел 4 «Руководство по использованию STATISTICA»], причем указать количество классов равным 7.
- 4. Подобрать наиболее подходящую функцию распределения для анализируемой случайной величины [раздел 5 «Руководство по использованию STA-TISTICA»]. Для этого проанализировать шесть имеющихся функций, причем указать количество классов равным 7. Построить соответствующие гистограммы для каждого распределения. По результатам анализа заполнить форму 1 (значения Chi–square и df берутся из соответствующих графиков).
- 5. Выбрать распределение с минимальным значением критерия Chi–square. Сравнить данное значение с табличным значением критерия [приложение 2], причем число степеней свободы f = df, а уровень доверительной вероятности $P_D = 0.95$.

		Τ`	
N⁰	Вид распределения	Chi-square	df
1	Normal – нормальное распределение		
2	Rectangular – обратное распределение		
3	Exponential – экспоненциальное распределение		
4	Gamma – гамма-распределение		

форма 1

5	Log-normal – логарифмически-нормальное распределение	
6	Chi-square – распределение кси-квадрат	

- 6. Сделать в тетради вывод о том, какой вид распределения является наиболее подходящим для анализируемой переменной.
- 7. Дополнить файл данных, добавить в матрицу исходного файла один столбик[см.раздел 1 «Руководство по использованию STATISTICA»] и ввести 20 значений Y1 соседнего варианта [приложение 8].
- 8. Подобрать закон распределения случайной величины Y1, используя критерий Колмагорова-Смирнова [раздел 5 «Руководство по использованию STA-TISTICA»]. Для этого проанализировать шесть имеющихся функций, указать количество классов равным 7. Построить соответствующие гистограммы для каждого распределения. По результатам анализа заполнить форму 2 (значения показателя Kolmagorov-Smirnov d= берутся из соответствующих графиков).

		форма 2
N⁰	Вид распределения	Kolmagorov-
п/п	C.	Smirnov
		d=
1	Normal – нормальное распределение	
2	Rectangular – обратное распределение	
3	Exponential – экспоненциальное распределение	
4	Gamma – гамма-распределение	
5	Log-normal – логарифмически-нормальное распре-	
	деление	
6	Chi-square – распределение кси-квадрат	

- 9. Выбрать распределение с минимальным значением критерия Kolmagorov-Smirnov. Сравнить выбранное значение с табличным значением критерия [приложение 3], причем уровень доверительной вероятности $P_D = 0.95$.
- Сделать в тетради вывод о том, какой вид распределения является наибо-10. лее подходящим для анализируемой переменной. HABCD.

Лабораторная работа №3

ОПРЕДЕЛЕНИЕ СТАТИЧЕСКИХ ОДНОФАКТОРНЫХ И МНОГОФАК-ТОРНЫХ КОРРЕЛЯЦИОННЫХ МОДЕЛЕЙ ПО ДАННЫМ ПАССИВ-НОГО ЭКСПЕРИМЕНТА

Цель: освоить навыки расчета парного и множественного коэффициента корреляции для установления статистически значимой связи между исследуемыми переменными

Основные сведения

При исследовании какого-либо объекта и одновременной регистрации двух (X и Y) или более факторов получается две или более последовательностей (по количеству факторов) сопряженных случайных чисел, являющихся координатами точек в многомерном пространстве признаков. Множество таких точек образует корреляционное поле, причем количество точек будет равно количеству наблюдений за объектом. Чем меньше разброс точек в корреляционном поле, тем сильнее теснота связи между случайными величинами.

Для оценки степени взаимосвязи двух случайных величин Х и У рассчитывают числовую характеристику *К*_{YX}, называемую <u>коэффициентом корреля</u>иии. Если численное значение коэффициента корреляции положительное – связь прямопропорциональная, если отрицательное – связь обратнопропорциональная.

По тесноте корреляционная связь между случайными величинами считается:

•	слабой	при	$_{0,3< }r_{YX \leq 0,4;}$
•	средней	при	$_{0,4< } \mathbf{r}_{YX \leq 0,7;}$
•	сильной	при	$_{0,7< }r_{YX \leq 0,9;}$
•	очень сильно	й при	$0,9 < r_{YX} .$

В результате дискретных измерений факторов X₁, X₂ и выходного параметра У получают совокупность случайных чисел. Теснота линейной связи между случайными величинами Х₁, Х₂ и У определяется множественным коэффициентом корреляции. Этот коэффициент определяет силу совместного влияния всех факторов на выходной параметр.

Множественный коэффициент корреляции R_{YX1X2}положителен, т. е. связь всегда прямопропорциональная. Теснота множественной корреляционной связи аналогична парной корреляции. "JANA

Задание

- 1. Организовать (создать) файл данных в программе «STATISTICA» [см. раздел 1 «Руководство по использованию STATISTICA»], заполнить его данными соседнего варианта [приложение 7].
- 2. Определить основные числовые характеристики (среднее, среднее квадратическое отклонение, дисперсия, среднеквадратическая ошибка) для перемен-[см. раздел 2 «Руководство Х1. Х2 и Y по использованию ных STATISTICA»]. Названия характеристик указать на русском языке.

- 3. На основании ошибки сделать вывод о достаточности объема выборки. Рассчитать доверительный объем испытаний для получения результата с ошибкой не более 3 %.
- 4. Провести корреляционный анализ [см. раздел 6, п.6.1 «Руководство по использованию STATISTICA»]. Найти значение парных коэффициентов корреляции между показателями X1 и X2, X1 и Y, X2 и Y, оценить их значимость по критерию p-level и сделать вывод о наличии взаимосвязи между исследуемыми параметрами для данного варианта.
- 5. Построить графики взаимосвязи (X1 от X2 и X2 от X1) между исследуемыми показателями [п.6.1 «Руководство по использованию STATISTICA»].
- 6. Рассчитать множественный коэффициент корреляции R_{YX1X2} [см. раздел 6, п.6.2 «Руководство по использованию STATISTICA»]. Сделать вывод о тесноте связи между исследуемыми переменными.
- 7. Рассчитать коэффициенты линейного корреляционного уравнения взаимосвязи Y от X1 и X2[см. раздел 6, п.6.2 «Руководство по использованию STA-TISTICA»].

Лабораторная работа №4

РАЗРАБОТКА ОДНОФАКТОРНОЙ РЕГРЕССИОННОЙ МОДЕЛИ ПО ДАННЫМ ПАССИВНОГО ЭКСПЕРИМЕНТА

Цель: освоить методику разработки модели первого порядка по данным активного эксперимента.

Основные сведения

После того, как исследователь убедится в наличии статистически значимых связей между анализируемыми переменными, он может приступать к выявлению и математическому описанию конкретного вида интересующих его зависимостей, а именно:

- подбирает класс функций, в рамках которого будет проводиться дальнейший анализ;
- производит, если это необходимо, отбор наиболее информативных предсказывающих переменных;
- вычисляет оценки коэффициентов уравнения зависимости;
- анализирует точность полученного уравнения связи.
 Все вышеперечисленное и составляет содержание регрессионного анали-

за.

Наиболее часто используемые модели при обработке результатов однофакторного эксперимента:

1) линейная:

$$Y = b_0 + b_1 \cdot X \tag{4.1}$$

2) параболическая:
$$Y = b_0 + b_1 \cdot X + b_2 \cdot X^2$$
, (4.2)

- $Y = b_0 \cdot X^{b_1} \tag{4.3}$
- 3) степенная:

$$Y = b_0 \cdot b_1^X \tag{4.4}$$

4) показательная:

6) логарифмическая:

5) гиперболическая:
$$Y = b_0 + b_1 / X$$
, (4.5)

$$Y = b_0 + b_1 \cdot \lg X \tag{4.6}$$

Для оценки значимости рассчитанных коэффициентов уравнения применяется критерий Стьюдента. Расчетное значение критерия Стьюдента *tp* сравнивают с табличным значением t_T (приложение 4) при заданном уровне доверительной вероятности P_D. Если $|t_P(bi)| > t_T$, то коэффициент регрессионного уравнения *bi* является значимым. Если $|t_P(bi)| < t_T$, то коэффициент уравнения незначим.

Для оценки точности разработанной модели используется критерий Фишера (приложение 6). В программе STATISTICA для этой цели используется показатель Varianceexplained.

Задание

- 1. Для расчета средних значений в каждом опыте организовать (создать) файл данных размером 5 х 5 в программе «STATISTICA» [см. раздел 1 «Руководство по использованию STATISTICA»] и заполнить его данными своего варианта [приложение 9].
- Определить среднее и среднеквадратическую ошибку для каждого из пяти опытов эксперимента [см. раздел 2 «Руководство по использованию STA-TISTICA»]. Исходя из величины допустимой ошибки (5%) сделать вывод о достаточности или недостаточности количества проведенных повторностей.
- 3. Организовать (создать) файл данных размером 2 х 5 [см. раздел 1 «Руководство по использованию STATISTICA»], заполнить его значениями переменных X (50, 100, 150, 200, 250) и Y (средние значения из предыдущей таблицы).
- 4. Провести корреляционный анализ [см. раздел 6, п.6.1 «Руководство по использованию STATISTICA»]. Найти значение парного коэффициента корреляции между исследуемыми показателями X и Y, оценить его значимость по

критерию p-level и сделать вывод о наличии взаимосвязи между переменными.

5. Провести регрессионный анализ [см. раздел 7 «Руководство по использованию STATISTICA»]. Подобрать походящий вид модели (формулы 4.1 – 4.6). Заполнить форму 3.

		форма 3
Вид м	одели	Дисперсия адекватности
4		(Varianceexplained)
Линейная		
Параболическая		
Степенная		
Показательная		
Гиперболическая		
Логарифмическая		

Оптимальной будет та модель, у которой выше значение дисперсии адекватности «Variance explained».

Лабораторная работа № 5

ОПРЕДЕЛЕНИЕ РЕГРЕССИОННЫХ МНОГОФАКТОРНЫХ МОДЕЛЕЙ ПО ДАННЫМ АКТИВНОГО ЭКСПЕРИМЕНТА

Цель:изучить задачи планирования активного эксперимента, освоить методику разработки модели второго порядка по данным эксперимента, проведенным по матрице Коно, разработки модели третьего порядка по данным полного факторного эксперимента с использованием матрицы первого порядка.

Основные сведения

В задачу планирования эксперимента входит:

◆ выбор необходимых для эксперимента опытов, т.е. построение матрицы планирования;

• выбор методов математической обработки результатов эксперимента.

Матрица планирования эксперимента представляет собой таблицу, в которой указаны значения уровней факторов в различных сериях опытов.

Эксперимент, реализующий все возможные неповторяющиеся комбинации уровней исследуемых факторов, называется полным факторным экспериментом (ПФЭ). Он применяется для получения регрессионной многофакторной модели (РМФМ) при исследовании локального участка факторного пространства, не соответствующего его экстремальной части. РМФМ, получаемая по результатам ПФЭ, имеет вид линейного полинома или неполного полинома второго порядка. Например,

1) неполный полином второго порядка для двух факторов:

$$Y = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + a_{12} \cdot X_1 \cdot X_2.$$
 (5.1)

2) неполный полином второго порядка для трех факторов:

$$Y = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + a_3 \cdot X_3 + a_{12} \cdot X_1 \cdot X_2 + a_{13} \cdot X_1 \cdot X_3 + a_{23} \cdot X_2 \cdot X_3$$
(5.2)

В матрице планирования используются кодированные значения уровней фактора:

(-) – нижний уровень фактора (равен -1);

(+) – верхний уровень фактора (равен +1);

Например, для двухуровневого трехфакторного эксперимента (2³) матрица ПФЭ содержит восемь опытов (таблица 5.1).

X1	X2	X3
-1	-1	-1
+1	-1	-1
-1	+1	-1
+1	+1	-1
-1		+1
+1	友	+1
-1	+10	+1
+1	+1	+1

Таблица 5.1 – Матрица ПФЭ 2³

В последнее время появились матрицы, которые удовлетворяют требованиям оптимальности оценок коэффициентов модели и выходного параметра при уменьшенном числе опытов. Матрицу, которая обеспечивает получение минимума обобщенной дисперсии, т.е. минимума дисперсии всех коэффициентов регрессии называют D-оптимальной. Одним из достоинств данных матриц является то, что факторы варьируются только на трех уровнях.

Регрессионная модель, разрабатываемая по результатам D-оптимальной матрицы имеет вид полного полинома второго порядка. Например, для двух факторов полная регрессионная модель второго порядка:

$$Y = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + a_{12} \cdot X_1 \cdot X_2 + a_{11} \cdot X_1 \cdot X_1 + a_{22} \cdot X_2 \cdot X_2$$
(5.3)

В литературе примеры матриц для планирования эксперимента представлены с условным обозначением строк матрицы, которые расшифровываются следующим образом:

- a, b, c, d, e факторы (соответственно X_1, X_2, X_3, X_4, X_5) на верхнем уровне;
- ♦ a(0),b(0),c(0),d(0),e(0) факторы (соответственно X_1, X_2, X_3, X_4, X_5) на основном уровне;
- (1) все факторы в данной строке на нижнем уровне.

Пример матрицы Коно для двух факторов (M=2), варьируемых на трех уровнях, представлен в таблице 5.2.

Таблица	5.2	- Матрин	а Коно
паолица	J.Z	maiping	a nomo

M	Число	Условное обозначение строк в матрице
0	опытов	
2	9	ab, b, a, (1),ab(0), b(0), a(0)b, a(0), a(0)b(0)
	14.	

Для оценки значимости рассчитанных коэффициентов регрессионного уравнения используется критерий Стьюдента, рассчитываемый в программе STATISTICA (см. раздел 7 «Руководство по использованию STATISTICA», рис.7.18) Полученное расчетное значение t_R сравнивается с табличным t_T , которое определяют по таблице в приложении4 при условии, что $P_D=0,95$ и число степеней свободы рассчитано в таблице (см. раздел 7, рис.7.18).

Если $t_R(b_i) < t_T$, то коэффициент уравнения *bi* незначим и его необходимо исключить из модели.

Задание

- 1. Организовать (создать) файл-матрицу данных размером 4 х 8 [см.раздел 1 «Руководство по использованию STATISTICA»], заполнить его значениями переменных X1, X2, X3 (-1; +1) (см.табл. 5.1) и Y (среднее значение по двум повторностям в строке, приложение 10).
- 2. Провести корреляционный анализ [см. раздел 6, п.6.1 «Руководство по использованию STATISTICA»]. Найти значение парного коэффициента корреляции между исследуемыми показателями Х1 и Y, Х2 и Y, Х3 и Y оценить его значимость по критерию p-level и сделать вывод о наличии взаимосвязи между переменными. Корреляционную матрицу и вывод записать. Рассчитать множественный коэффициент корреляции между Y и X₁X₂X₃[см. раздел 6, п.6.2 «Руководство по использованию STATISTICA»].
- 3. Провести регрессионный анализ[см. раздел 7 «Руководство по использованию STATISTICA»]. Разработать неполную трехфакторную модель второго порядка (формула 5.2).
- 4. Оцените адекватность модели и значимость коэффициентов по критерию Стьюдента и по p-level-уровню. Исключить незначимые коэффициенты из модели.
- 5. Построить поверхность отклика по полученной модели [см. раздел 8 «Руководство по использованию STATISTICA»].

- 6. Организовать (создать) файл данных размером 3 х 9 в программе раздел **«STATISTICA»** СМ. «Руководство 1 ПО использованию STATISTICA»] и заполнить его значениями уровней факторов экспериментальной матрицы Коно(таблица 5.2) и данными выходного параметра (приложение 11).
- 7. Провести регрессионный анализ[см. раздел 7 «Руководство по использованию STATISTICA»] и разработать полную двухфакторную регрессионную модель второго порядка (формула 5.3).
- 8. Рассчитать коэффициенты регрессионного уравнения, оценить их значимость по p-level уровню. Исключите незначимые коэффициенты.
- 9. Оцените адекватность разработанной модели. Если требуется, перейдите к разработке модели более высокого порядка.
- 10. Запишите полученную модель с подстановкой численных значений коэффициентов уравнения.
- 11. Построить поверхность отклика по полученному уравнению [см. раздел 8 «Руководство по использованию STATISTICA»].

Лабораторная работа № 6

ИЗУЧЕНИЕ МЕТОДОВ АНАЛИЗА НЕРОВНОТЫ ВОЛОКНИСТЫХ ТЕКСТИЛЬНЫХ ПРОДУКТОВ

изучить способы оценки неровноты разными методами, Пель: изучить принцип работы прибора UsterTester 5.

Основные сведения

Неровнота, как одно из наиболее отрицательных свойств волокнистых текстильных продуктов, в большой мере влияет на технико-экономические показатели работы фабрик и физико-механические свойства продуктов прядения и ткачества. Неровнота пряжи по линейной плотности и крутке обусловливает такие дефекты в структуре и внешнем виде ткани или трикотажа, как полосатость, зебристость, муаровый и ромбоидальный эффект. Поэтому контроль и исследование неровноты имеют важное значение и позволяют устанавливать 20C47 время, место и причины возникновения неровноты.

Методы анализа неровноты:

1. Весовой метод

Методика испытаний по данному методу заключается в подготовке отрезков одинаковой длины и взвешивании данных отрезков. Достоинства: простота испытаний, отсутствие потребности в дорогостоящих приборах (нужны только торсионные весы и мотовило). Недостатки: низкая точность и высокая трудоемкость.

2. Механический метод

Разрабатывался как альтернатива весовому методу, но не нашел широкого применения.Достоинство: полная механизация испытаний.Недостатки: низкая точность и высокая инерционность прибора.

Рисунок 6.1 – Принципиальная схема механического метода оценки неровноты

3. Емкостной метод

ΤЫ

Рисунок 6.2 – Принципиальная схема емкостного метода оценки неровно-

Наиболее распространенный метод оценки неровноты, используется на современном лабораторном оборудовании. Достоинства: высокая точность, отсутствие контакта с волокном, возможность регистрации при любой скорости транспортирования волокнистого продукта, возможность оцифровки данных и передачи этих данных на ПК.Недостатки: жесткие требования к соблюдению кондиционных условий. 4. Оптический метод

BUTCL

Рисунок 6.3 – Принципиальная схема оптического метода оценки неровноты

Разрабатывался как альтернатива емкостному методу, но в настоящее время применяется только для анализа объемности и ворсистости пряжи.

Задание

- 1. Изучить методы оценки неровноты текстильных материалов.
- 2. Изучить работу прибораUsterTester 5. Провести исследования качества хлопчатобумажной пряжи на приборе.
- 3. Рассчитать индекс неровноты опытного варианта пряжи.

7 Руководство по использованию программы STATISTICA for Windows

1. Создание нового файла (документа)

На линейке нажимаем File \rightarrow New (рис.7.1).

									_
🔏 STATIST	ICA - Sprea	adsheet1					C/L		
<u>File</u> <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	t F <u>o</u> rmat	<u>S</u> tatisti	ics Data <u>M</u>	<u>M</u> ining <u>G</u> rap	ihs <u>T</u> ools	<u>D</u> ata <u>W</u> ind	ow <u>H</u> elp	
<u>N</u> ew		Ctrl+N) 🛍 j	🝼 🔊	🗠 🊧 A	dd to Workb	ook 👻 Add t	to Report 🔻	
Open Open L	 <u>J</u> RL	Ctrl+O	•	В <i>I</i> <u>ц</u>	ī ≣ ≣	≡ 🗗 ,	<u>A</u> • <u>></u> • [a • 💊	
Open E Close	ixamples		9c)						5
			L	-		_		_	
🔚 Save		Ctrl+S		3	4	5	6		
Save <u>A</u>	<u>i</u> s	F12		y1	y2	уЗ	y4		
. 🔁 Save A	s PDF		-1	332	3,3	1,59	1,24		
			0	348	3,45	1,26	0,95		
Save P	roject		1	436	4,16	1,33	1,01		
Save P	roject As		0	512	3,7	1,47	0,98		
Open F	Proj <u>e</u> ct		-1	368	3,09	1,11	0,77		
			1	356	3.84	15	1 1		

Рисунок 7.1 – Окно создания нового файла

В появившемся окне (рисунок 7.2) в ячейке Numberofvariable – указывают количество столбиков, в ячейке Numberofcase – количество строк ; в окне **Displayformat** выбрать вид переменных – *number* (числовой), после чего станет активной ячейка **Decimalplaces** – в ней указать количество знаков после запятой.

	Create New Docume	nt		? 🔀
4	In-place Data	base Interface	🎨 Browser Window 📄 🗐 🚯 Macro (SVB) Program	Office Document
⁰ 6	Number of variables: Number of cases:	10 10	Placement C In a new Workbook	
KY44	Case name length: MD code:	0	Var name prefix: Var	
	Default data type:	Double	Var name start number: 1	
	General Display format	Decimal places:	0	
	Time Scientific Currency Percentage Fraction Custom	1 000; -1 000 1 000; (1 000) 1 000; (1 000) 1 000; (1 000)		
V			Default	
			4	ОК Отмена

Рисунок 7.2 – Окно ввода числа столбиков, строчек, типа переменных

Если требуется дополнить файл новыми значениями переменной (добавить столбики или строчки) необходимо на линейке экрана выбрать закладку **Insert**, в ней строчку *AddVariables* (добавить столбики) или *AddCases*(добавить строчки). Появится окно (рис.7.3), в котором в ячейке <u>*Howmany*</u> задают числостолбиков (строк), которые требуется добавить, в ячейке <u>*After*</u> – указать после какого столбика (строчки) вставить новые столбики (строки).

	Add Variables	<u>? ×</u>
	How many: 1 Use 0 in "After" fit before first variab on it or press F2 t variable from list.	eld to insert OK le. Double-click o select Cancel
	Name: NewVar Type: Double	•
BUTR	MD code: •99999998 E Length: 8 Display format General Number Date Time Scientific Currency Percentage Fraction Custom	If values of the new variable are to be computed, and the data set is large, it saves time to add variables and simultaneously recalculate their values using the Batch Transformations option (Data menu).

Рисунок 7.3 – Меню ввода дополнительных столбиков (строк)

2. Расчет среднестатистических характеристик

Для расчета среднего, дисперсии, среднего квадратического отклонения на линейке экрана в меню Statistics выбираемстроку Basic Statistics/Tables (рисунок 7.4) и далее строкуDescriptive statistics(рис. 7.5).

В появившемся окне (рисунок 7.6) в ячейке Variable задают переменные, по которым проводят расчет. Далее в закладке Advanced проставляют галочки напротив тех параметров, которые требуется рассчитать (таблица 7.1).

После выбора параметров для расчета нажимаем кнопку <u>Summary</u>

Рисунок 7.6 – Стартовое окно Descriptivestatistics

	1	
V	alid N	Число элементов совокупности
Μ	Iean	Среднее
S	um	Сумма
Μ	Iedian	Медиана
St	tandart Deviation	Среднее квадратическое отклонение
V	ariance	Дисперсия
St	tandart Error of mean	Средняя квадратическая ошибка
9:	5% confidence limits of mean	Уровень доверительной вероятности
Μ	linimum and Maximum	Минимум и максимум совокупности
L	ower and upper quartiles	Нижний и верхний квартиль

Таблица 7.1 – Среднестатистические характеристики

3. Построение гистограммы и Box-diagram Для построения гистограммы в окне DescriptiveStatistics (рис.7.6) выбираем переменные для построения, а затем нажимаем кнопку Histograms.

Для построения **Box-duarpammы** в окне DescriptiveStatistics (рис. 7.6) выбираем переменные для построения, затем нажимаем кнопку а Box&whiskerplotallvariable.

4. Построение частотной таблицы

Для разбивания всей выборки на классы (частотный анализ) в меню Statisticsвыбираем«BasicStatistics» (рисунок7.4) и далее оператор FrequencyTables(рис.7.5). В появившемся окне (рисунок 7.7) задаемся переменными в ячейке Variable, после чего в закладке Advanced активируем строку Stepsize и указываем в ней величину интервала, с которым разбивалась выборка на классы. В результате получаем окно (рис.7.8), в котором в первом столбике указаны границы интервалов, на которые разбита выборка, в столбце *Count* – количество переменных, попавших в указанный класс, *CumulativeCount* - сумма переменных, попавших во все предыдущие классы, *Percent* – процент перемен-MBCOCUTOT ных, попавших в каждый класс.

🖾 Frequency Tables: Spreadsheet1	? _ 🔀
<u>↓</u> <u>v</u> ariables: none	Summary
Quick Advanced Options Descr. Normality	Cancel
Summary: <u>Fr</u> equency tables <u>H</u> istograms	🔈 Options 🔻
Categorization methods for tables & graphs:	By Group
○ All distinct values	
O No. of exact intervals: 10	
O "Neat" intervals; approximate no.: 10	
starting at: 0, 🚽 or 🔽 at minimum	SILLECT & R W
○ Integer categories ▼ with text labels	Wahtd momnts
C Specific grouping codes (values)	MD deletion
User-specified categories 🔒	C Casewise
YQ	Pairwise

Рисунок 7.7 – Стартовое окно модуля Frequencytable

1.16						_				
	Frequency table: P (Spreadsheet1)									
				Count	Cumulative		Percent	Cumulative		
¢	From	То		7.	Count			Percent		
1	12,5000)<=x<1	13,10000	2		2	22,22222	22,2222		
	13,1000]<=x<1	3,70000	4	E	3 4	44,44444	66,6667		
	13,70000]<=x<1	4,30000	1	7	7	11,11111	77,7778		
	14,3000)<=x<1	4,90000	2		3	22,22222	100,0000		
	14,9000)<=x<1	5,50000	0	2	3	0,00000	100,0000		
	Missing			0	ja L	3	0,00000	100,0000		
- 18										

Рисунок 7.8 – Расчетная таблица модуля Frequencytable

5. Определение закона распределения случайной величины

Для определения закона распределения случайной величины необходимо в меню Statistics(рис.7.4), выбрать раздел «Distributionfitting». В появившемся окне (рис.7.9) в рамке ContinuousDistribution дважды нажать левой клавишей мышки на строку Normal.

В новом окне (рис.7.10) нажимаем Variable и выбираем анализируемые переменные. Далее в закладке Parameters в ячейке Numberofcategories указываем количество классов, на которые разбита выборка. Затем необходимо поочередно выбирать в ячейке Distribution закон распределения случайной величины (нормальный экспоненциальный, гамма и т. д.) и, нажимая кнопку Summary, получаем расчетное значение критерия Пирсона *Chi-Square* (рис.7.11 выделено в рамочке), число степеней свободы df и уровень значимости критерия p=.

	🔀 Distribution Fitting: S	preadsheet1	? _ 🔀
\wedge	Quick		E OK
47	Continuous Distributions:	O Discrete Distributions:	Cancel
°6 6	Normal — Rectangular	Lilling Binomial	🔊 Options 👻
TZ		Geometric	
		L <mark>ulli.,</mark> Bernoulli	
	Chi-square		Stitter & See M
			CHSES 2

Рисунок 7.9 – Окно выбора закона распределения

9	C Fitting Continuous Di	stributions: S	preadsheet1	? _ 🔀	
	tistribution: <mark>Normal</mark> ♥■ ⊻ariable: P	J	trion	Cancel	
	Quick Parameters Option Number of categories:	15	Set to default Click to restore	SELECT S By Group	
	Upper limit: Mean: Variance:	15,2 13,577777 ,62194444	number of categories, lower and upper limits and distribution parameters to default.	TH YHUND	
	Observed mean: Observed variance:	13,577778 ,6219444			OC2

Рисунок 7.10 – Стартовое окно выбора закона распределения

Для построения гистограммы выбранного закона распределения в окне FittingContinuous (рисунок 7.10) в закладке Quick выбираем кнопку **Plotofobservedandexpecteddistribution** (рисунок7.12).

Для расчета критерия Колмагорова-Смирнова в окне FittingContinuous (рис.7.10) в закладке Option активировать строку Yes (categorized) в ячейке Kolmagorov-Smirnovtest.

2		Variable: VAR1, Distribution: Normal (11111.STA)									
5	C	Chi-Square =	Chi-Square = 0,62254, df = 1 (adjusted) , p = 0,43010								
$\langle \gamma \rangle$	Upper	Observed	Cumulative	Percent	Cumul. %	Expected	Cumulative	Percent	Cumul. %	0	
9	Boundary	Frequency	Observed	Observed	Observed	Frequency	Expected	Expected	Expected	E	
	<= 820,00000	2	2	5,00000	5,0000	0,74459	0,74459	1,86148	1,8615		
	860,0000	5	7	12,50000	17,5000	5,08869	5,83328	12,72173	14,5832		
	900,0000	14	21	35,00000	52,5000	13,75635	19,58963	34,39086	48,9741		
	940,00000	12	33	30,00000	82,5000	14,09354	33,68317	35,23384	84,2079		
	< Infinity	7	40	17,50000	100,0000	6,31683	40,00000	15,79208	100,0000		
		O_{a}									

Рисунок 7.11 – Расчетное окно модуля FittingContinuous

Рисунок 7.12 – Гистограмма нормального распределения случайной вели-Chiper чины

6.Корреляционный анализ

6.1. Парная корреляция

Для проведения корреляционного анализа необходимо В меню Statistics(рис.7.4), выбрать раздел «Basic Statistics». В появившемся окне (рис.7.5) выбрать раздел Correlationmatrices и нажать «ОК». В появившемся окне (рис.7.13) нажимаем кнопку **[wolists (rect. matrix)]** и выбираем, какие переменные в корреляционной матрице будут в столбце Firstvariablelist, а какие – в столбце Secondvariablelist и нажимаем «ОК». После этого в закладке Option (рис.7.13) активируем строку Displayr, p-level, andN's для вывода на экран уровня значимости рассчитанных параметров, после нажимаем Summary . Результаты расчета представлены на рисунке 7.14.

Reproduct-Moment and Partial Correlations	: Spre ? _
🗩 One variable list 💻 Iwo lists (rect. matrix)	Summary
First list: none	Cancel
Second list: none	S 0-5
Quick Advanced/plot Options	
Display format for correlation matrices	별별 By Group
• Display simple matrix (highlight p's)	
Display r, p-levels, and N's	
 Display detailed table of results 	
Display long variable names	□ Weighted moments
Extended precision calculations	
p-level for highlighting: 05	• W-1 O N-1
✓ Include means and std. devs. in square matrices	MD deletion
i ct	 Casewise Pairwise

Рисунок 7.13 – Стартовое окно модуля Correlationmatrices

Рисунок 7.14 – Результирующее окно корреляционного анализа

Для построения графического изображения корреляционной взаимосвязи исследуемых параметров необходимо в стартовом окне (рис.12) в закладке Advanced/plot нажать кнопку 2Dscaterp.

6.2 Множественная корреляция

Для расчета множественного коэффициента корреляции необходимо в меню Statistics (рис.7.4) выбрать раздел MultipleRegression. В появившемся окне нажимаем Variable и выбираем переменные, между которыми необходимо рассчитать корреляцию, причем в столбце Dependentvar указать зависимые переменные (выходные), а в столбце Independentvar – независимые (входные) переменные. Затем нажать «ОК». В появившемся окне (рис.7.15) в строке <u>MultipleR</u> указан рассчитанный множественный коэффициент корреляции.

🖉 Multiple Regression Results: 11111.STA 🛛 📍 💶 🔀
Multiple Regression Results
Dependent: VAR1 Multiple $R = ,60743250$ F = 1,169443 R?= .36897424 df = 1.2
No. of cases: 4 adjusted R?= ,05346136 p = ,392568
Standard error of estimate:25,740571982
Intercept: 956,72965312 Std. Brror: 40,67799 t(2) = 23,520 p = ,0018
VAR2 beta=-,61
Q1
TX.
(simificant bates are bighlighted)
(significant becas are highlighted)
Alpha for highlighting effects: 05
Quick Advanced Residuals/assumptions/prediction Cancel
Summary: Regression results
By Group
14BCD

Рисунок 7.15 – Результирующее окно расчета множественного коэффициента корреляции

Для расчета коэффициентов линейного уравнения взаимосвязи Yot X1 и X2(Y=a0+a1*x1+a2*x2) в окне <u>MultipleRegressionResults</u> (рисунок7.15) нажать

кнопку SummaryRegressionresults. В появившемся окне (рисунок 7.16) в столбце «В» представлены значения независимых коэффициентов уравнения:

- в строке Intercept значение коэффициента а0;
- в строке x1 значение коэффициента a1;
- в строке x2 значение коэффициента a2.

OL.		Regression Summary for Dependent Variable: CvP (copτ1_1) R= ,50612556 R?= ,25616308 Adjusted R?= ,00821744 F(2,6)=1,0331 p<,41156 Std.Error of estimate: 4,3587					
		Beta	Std.Err.	В	Std.Err.	t(6)	p-level
	N=9		of Beta		of B		
C.	Intercept			18,94444	1,452885	13,03919	0,000013
1	x1	0,504576	0,352098	2,55000	1,779413	1,43306	0,201823
The	x2	-0,039575	0,352098	-0,20000	1,779413	-0,11240	0,914175

Рисунок 7.16 – Расчет коэффициентов линейного уравнения

7. Регрессионный анализ

Для проведения нелинейного регрессионного анализа необходимо в меню Statistics (рис.7.4) выбрать раздел AdvancedLinear/NonlinearModel, а в нем NonlinearEstimation. В появившемся окне выбрать разделUserspecifiedregression, customforloss. Появится окно (рис.7.17), в рамке Estimatedfunction вводят общий вид регрессионного уравнения, для которого необходимо провести расчет коэффициентов уравнения.

Рисунок 7.17 – Стартовое окно нелинейного регрессионного анализа

Далее, последовательно нажимая несколько раз «ОК», в окне ModelEstimation в закладке Advanced активировать строку (проставить « $\sqrt{}$ ») Asymptoticstandarterrors для включения в итоговый отчет расчет ошибок и уровней значимости. Искомые значения коэффициентов модели будут находиться в окне – таблице Model (рис.7.18).

В заголовке таблицы показатель Varianceexplained отражает адекватность модели. В строках таблицы указана следующая информация:

Estimate – численное значение рассчитанных коэффициентов;

Std.Err. – средняя квадратическая ошибка расчета;

t(5) – расчетное значение критерия Стьюдента (цифра в скобках – число степеней свободы);

p-level – уровень значимости рассчитанных коэффициентов.

	Model: H= Dep_var: H FinatJoss:	a0+a1*x1+ H Loss: (Ol ,00298334	⊦a2*x2 (Sp BS-PRED) 46 R= ,995	readsheet1 **2 47 Varianc) :e explaine	d: 99,097%
N=9	a0	a1	a2			
Estimate	5,0933	-0,0950	-0,2134			
Std.Err.	0,0074	0,0091	0,0091			
t(6)	685,2454	-10,4330	-23,4386			
p-level	0,0000	0,0000	0,0000			

Рисунок 7.18 – Результирующее окно расчета коэффициентов регрессионного уравнения

8. Графический редактор

Для построения графика модели используется графический редактор. На линейке экрана выбираем меню **Graphs**(рис.7.19), в нем раздел **3DXYZGraphs** и далее **CustomFunctionPlots**. Появится окно (рис.7.20), в котором в ячейке *Function* записывают регрессионное уравнение с подстановкой численных значений коэффициентов.

Важно! В уравнении проводят замену: переменную X₁ заменяют на X, X₂ – на Y.

В ячейках Xmin, Xmax, Ymin, Ymax указывают минимальное и максимальное значение, которое могут принимать переменные X1 (ячейка X) и X2 (ячейка Y). Далее нажимаем ОК. В результате получаем графическое представление поверхности отклика (рис.7.21).

Рисунок 7.19 – Графический редактор

🗱 3D Custom Function Plots	0/10	? _ ×
Quick Appearance Options 1 Options	2	ОК
Name: New function	Add to list	Cancel
<u>X</u> Min: -1	Function list	Doptions 👻
<u>Y</u> Min: -1 ♥ Y M <u>a</u> x: 1 ♥		By Group
Eunction:		SELECT Sel Cond
Z(x, y) = 1258-12*x-59*y+36,8*x*y	E.	Case Weights
		Graphs Gallery
	_	Updating: Auto 🔻
		7. Po
Рисунок 7.20 – Окно	ввода уравнения и грани	ц построения
		47
		0,

Рисунок 7.21 – Поверхность отклика

Для редактирования внешнего вида графика на поле свободном от графика, но в пределах графика, нажимаем правой кнопкой мыши и активируем строку GraphProperties (Alloption). Появится окно (рис.7.21) в нем закладки:

GraphWindows, в ней:

KANA XHUBBOCUTEL OutsideBackground (цвета внутри графика); sideBackground(цвета снаружи графика). *GraphLayout*, в ней: в ячейке Graphtype выбирают тип графика: (Standard – трехмерный, 2D Projection – двухмерный); *GraphTitles/Text,вней:* в окне записывается название графика; *Surface*, в ней:

в ячейке Surface (Projection) contour Display напротив (отражение линий на плоскости) поставить « $\sqrt{}$ ».

<complex-block></complex-block>		ptions				? 🔀	
Image in the second in the	Grap	ph Window	Axis:		pecs to		
Image Titles/Text Image Titles/Text Point of View Image Titles/Text View Image Titles/Text <	Grap	ph Layout			▼ 16 ▼		
Surface Image: Custom Function Axis: Tale Image: Display Axis Tale Axis: Scale Values Image: Display Axis Tale Axis: Custom Units Image: Display Axis Tale Styles Image: Display Axis Tale	Grap	ph Titles/Text	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	≣≣ ₩			
Point of View Display Axis Tite Display Axis Tite Axis: Tite Display Axis Tite Display Axis Tite Axis: Scale Values Axis: Scale Values Display Axis Tite Axis: Scale Values Display Axis Tite Display Axis Tite State: Custom Units Display Axis Tite Display Axis Tite State: Custom Units Display Axis Tite Display Axis Tite Styles Display Axis Tite Display Axis Tite Dis	Surf	face		7			
Luston Function Axis: Title Axis: Scaling Image: Axis: Title Display Axis: Title Display Axis: Title State: Scale Values Axis: Custon Units Axis: Scale Values Styles OK	Poin	nt of View					
Axis: Title Display Axis Title Disconnect object(s) from graph Axis: Major Units Axis: Scale Values Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Disconnect object(s) from graph Axis: Custom Units Disconnect object(s) from graph Distonnect object(s) from graph	Cust	tom Function					
Avis: Scaling Image: Display Avis Title Disconnect object(s) from graph Avis: Klaior Units Avis: Scale Values Image: Clastore Units Avis: Clastore Units Image: Clastore Units Image: Clastore Units Styles Image: Clastore Units Image: Clastore Units	Axis:	: Title					
Акія: Маїог Units Акія: Scale Values Акія: Custom Units Styles Висунок 7.22 – Окно ввода параметров графика	Axis:	; Scaling	Display Axis Title	Discon	nect object(s) from	graph	
Asis: Minor Units Asis: General Styles OK	Axis;	: Major Units					
Алі:: Scale Value Алі:: Custom Units Styles ОК Отмена Рисунок 7.22 – Окно ввода параметров графика	Axis:	: Minor Units					
Axis: Custom Units OK OTMEHE Styles OK OTMEHE Procynok 7.22 – Окно ввода параметров графика	Axis:	: Scale Values					
	Axis:	: Custom Units					
вушез ОК Отмена	Axis:	: General	Cx				
Рисунок 7.22 – Окно ввода параметров графика	St	ules)тмена	
Ch				Et HONO	My CKM	JANAS	

Список использованных литературных источников

- 1. Айвазян, С.А. Прикладная статистика: основы моделирования и первичная обработка данных / С.А.Айвазян, И.С.Енюков, Л.Д.Мешалкин / М., Финансы и статистика, 1985. – 362 с.
- 2. Интернет сайт. Режим доступа: soc-research.info.
- 3. Интернет-сайт. http://soft.mydiv.net/win/download-Режим доступа:

<u>STATISTICA.html</u>. 4. Севостьянов, А.Г. Методы и средства исследований процессов текстильной промышленности / BO. SHOIL THE OWNER OWNE механикотехнологических процессов текстильной промышленности / А.Г. Сево-

ментов совокуп- ности 0,99 0,95 0,90 3 1.414 1.412 1.406 4 1.723 1.689 1.645 5 1.955 1.869 1.791 6 2.130 1.996 1.894 7 2.265 2.093 1.974 8 2.374 2.172 2.041 9 2.464 2.237 2.097 10 2.540 2.294 2.146 11 2.606 2.343 2.190 12 2.663 2.387 2.229 13 2.714 2.426 2.664 14 2.759 2.461 2.297 15 2.800 2.493 2.326 16 2.837 2.523 2.354 17 2.871 2.551 2.380 18 2.903 2.577 2.404 19 2.932 2.600 2.426 20 2.959 2.623 2.4	0,99 1.414 1.723 1.955 2.130	0,95 1.412 1.689	<i>0,90</i> 1.406
ности 0,99 0,95 0,90 3 1.414 1.412 1.406 4 1.723 1.689 1.645 5 1.955 1.869 1.791 6 2.130 1.996 1.894 7 2.265 2.093 1.974 8 2.374 2.172 2.041 9 2.464 2.237 2.097 10 2.540 2.294 2.146 11 2.606 2.343 2.190 12 2.663 2.387 2.229 13 2.714 2.426 2.664 14 2.759 2.461 2.297 15 2.800 2.493 2.326 16 2.837 2.523 2.354 17 2.871 2.551 2.380 18 2.903 2.577 2.404 19 2.932 2.600 2.426 20 2.959 2.623 2.447 <td>0,99 1.414 1.723 1.955 2.130</td> <td>0,95 1.412 1.689</td> <td>0,90 1.406</td>	0,99 1.414 1.723 1.955 2.130	0,95 1.412 1.689	0,90 1.406
m $0,99$ $0,95$ $0,90$ 31.4141.4121.40641.7231.6891.64551.9551.8691.79162.1301.9961.89472.2652.0931.97482.3742.1722.04192.4642.2372.097102.5402.2942.146112.6062.3432.190122.6632.3872.229132.7142.4262.664142.7592.4612.297152.8002.4932.326162.8372.5232.354172.8712.5512.380182.9032.5772.404192.9322.6002.426202.9592.6232.447212.9842.6442.467223.0082.6642.486233.0302.6832.504243.0512.7012.502253.0712.7172.537	0,99 1.414 1.723 1.955 2.130	0,95 1.412 1.689	0,90 1.406
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.414 1.723 1.955 2.130	1.412 1.689 1.860	1.406
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.723 1.955 2.130	1.689	1 (1 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>1.955</u> 2.130	1 860	1.645
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.130	1.009	1.791
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.996	1.894
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.265	2.093	1.974
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.374	2.172	2.041
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.464	2.237	2.097
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.540	2.294	2.146
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.606	2.343	2.190
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.663	2.387	2.229
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.714	2.426	2.664
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.759	2.461	2.297
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.800	2.493	2.326
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.837	2.523	2.354
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.871	2.551	2.380
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.903	2.577	2.404
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.932	2.600	2.426
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.959	2.623	2.447
22 3.008 2.664 2.486 23 3.030 2.683 2.504 24 3.051 2.701 2.502 25 3.071 2.717 2.537	2.984	2.644	2.467
23 3.030 2.683 2.504 24 3.051 2.701 2.502 25 3.071 2.717 2.537	3.008	2.664	2.486
24 3.051 2.701 2.502 25 3.071 2.717 2.537	3.030	2.683	2.504
25 3.071 2.717 2.537	3.051	2.701	2.502
J.	3.071	2.717	2.537
			"The
			NO.
C.			C,
C/			4
Ch			*
Ch			
		$\begin{array}{r} 2.265\\ \hline 2.374\\ \hline 2.464\\ \hline 2.540\\ \hline 2.606\\ \hline 2.663\\ \hline 2.714\\ \hline 2.759\\ \hline 2.800\\ \hline 2.837\\ \hline 2.871\\ \hline 2.903\\ \hline 2.932\\ \hline 2.932\\ \hline 2.959\\ \hline 2.984\\ \hline 3.008\\ \hline 3.001\\ \hline 3.051\\ \hline 3.071\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Критические значения критерия Смирнова-Граббса V_T

O4				Приложение 2
0	Критические значен	ия критерия Пирсона	χ^2_T	
Число степеней свободы	*	Уровень доверительной	вероятности	
f Z	0,90	0,95	0,99	0.999
1	2,705	3,841	6,635	10,828
2	4,605	5,991	9,210	13,816
3	6,251	7,815	11,345	16,266
4	7,779	9,488	13,277	18,467
5	9,236	11,070	15,086	20,515
6	10,645	12,591	16,812	22,458
7	12,017	14,067	18,475	24,322
8	13,361	15,507	20,090	26,125
9	14,684	16,919	21,666	27,877
10	15,987	18,307	23,209	29,588
11	17,275	19,675	24,725	31,264
12	18,549	21,026	26,217	32,909
13	19,812	22,362	27,688	34,528
14	21,064	23,685	29,141	36,123
15	22,307	24,996	30,578	37,697
16	23,542	26,296	31,999	39,252
17	24,769	27,587	33,409	40,790
18	25,989	28,869	34,805	42,312
189	27,204	30,143	36,191	43,820
20	28,412	31,410	37,566	45,315
21	29,615	32,670	38,932	46,797
22	30,813	33,924	40,289	48,268
23	32,007	35,172	41,638	49,728
24	33,196	36,415	42,980	51,179
25	34,382	37,625	44,314	52,620
		36	China and China	•

Табличное значение критерия Колмагорова-Смирнова (dт)

OLAN NO			Прилож
0	Табличное значение кри	терия Колмагорова-Смирно	рва (dт)
α m	0.10	0.05	0.01
4	0,352	0,381	0,417
5	0,317	0,337	0,405
6	0,294	0,319	0,364
7	0,276	0,300	0,348
8	0,261	0,285	0,331
9	0,249	0,271	0,311
10	0,239	0,258	0,294
11	0,230	0,249	0,284
12	0,223	0,242	0,275
13	0,214	0,234	0,268
14	0,207	0,227	0,261
15	0,201	0,220	0,257
16	0,195	0,213	0,250
17	0,189	0,206	0,245
18	0,184	0,200	0,239
19	0,179	0,195	0,235
20	0,174	0,190	0,231
25	0,165	0,180	0,203
30	0,144	0,161	0,187
m>30	0,805	<u>0,886</u>	<u>1,031</u>
m- 50	\sqrt{m}	\sqrt{m}	\sqrt{m}
	· · · · · · · · · · · · · · · · · · ·		CPC42
		37	Q

O4x				Приложени
Q	Критические значен	ния критерия Стьюдента	t_T	
Число степеней свободы		Уровень доверительной в	ероятности	
f	0,8	0,90	0,95	0.99
1	3,078	6,314	12,706	63,657
2	1,866	2,920	4,303	9,925
3	1,638	2,353	3,182	5,841
4	1,533	2,132	2,776	4,604
5	1,476	2,015	2,571	4,032
6	1,440	1,943	2,447	3,707
7	1,415	1,895	2,365	3,499
8	1,397	1,860	2,306	3,355
9	1,383	1,833	2,262	3,250
10	1,372	1,812	2,228	3,169
11	1,363	1,796	2,201	3,106
12	1,356	1,782	2,179	3,055
13	1,350	1,771	2,160	3,012
14	1,345	1,761	2,145	2,977
15	1,341	1,753	2,131	2,947
16	1,337	1,746	2,120	2,921
17	1.333	1.740	2.110	2,898
18	1.330	1.734	2.101	2.878
19	1.328	1.729	2.093	2.861
20	1.325	1,725	2,086	2.845
21	1.323	1.721	2,080	2.831
22	1.321	1.717	2,074	2.819
23	1 319	1 714	2.069	2 807
24	1 318	1 711	2,064	2 797
25	1 316	1 708	2,060	2,787
26	1 315	1 706	2,056	2 779
27	1 314	1 703	2,050	2,771
28	1 313	1 701	2 048	2,763
29	1 311	1 699	2,045	2,756
30	1 310	1,697	2,042	2 750
40	1 303	1 684	2,012	2,700
60	1 296	1 671	2,021	2,660
120	1 289	1 658	1 980	2,617
<u> 60 </u>	1,296 1,289	1,671 1,658 38	2,000 1,980	2,660 2,617

	<	2												
		100											Прила	жение
	1	0	2			Крите	рий Коч	ирена						
Ν			-12	1	1	Стег	ень сво	боды f =	-m-1		1		1	1
	1	2	3 4	4	5	6	7	8	9	10	16	36	144	∞
2	0,9985	0,9750	0,9392	0,9057	0,8772	0,8534	0,8332	0,8159	0,8010	0,7880	0,7341	0,6602	0,5813	0,5000
3	0,9669	0,8709	0,7977	0,7457	0,7071	0,6771	0,6530	0,6333	0,6167	0,6025	0,5466	0,4748	0,4031	0,3333
4	0,9065	0,7679	0,6841	0,6287	0,5859	0,5598	0,5365	0,5175	0,5017	0,4884	0,4366	0,3720	0,3093	0,2500
5	0,8412	0,6838	0,5981	0,5441	0,5065	0,4783	0,4564	0,4387	0,4241	0,4118	0,3645	0,3066	0,2513	0,2000
6	0,7808	0,6161	0,5321	0,4803	0,4447	0,4184	0,3880	0,3817	0,3682	0,3568	0,3135	0,2612	0,2119	0,1667
7	0,7271	0,5612	0,4800	0,4307	0,3974	0,3726	0,3535	0,3384	0,3259	0,3154	0,2756	0,2278	0,1833	0,1429
8	0,6798	0,5157	0,4377	0,3910	0,3595	0,3362	0,3185	0,3043	0,2926	0,2829	0,2462	0,2022	0,1616	0,1250
9	0,6385	0,4775	0,4027	0,3584	0,3286	0,3067	0,2901	0,2768	0,2659	0,2568	0,2226	0,1820	0,1446	0,1111
10	0,6020	0,4450	0,3733	0,3311	0,3029	0,2823	0,2666	0,2541	0,2439	0,2353	0,2032	0,1655	0,1308	0,1000
12	0,5410	0,3924	0,3264	0,2880	0,2624	0,2439	0,2299	0,2187	0,2098	0,2020	0,1737	0,1403	0,1100	0,0833
15	0,4709	0,3346	0,2758	0,2419	0,2195	0,2034	0,1911	0,1815	0,1736	0,1671	0,1429	0,1144	0,0889	0,0667
20	0,3894	0,2705	0,2205	0,1921	0,1935	0,1602	0,1501	0,1422	0,1357	0,1303	0,1108	0,0879	0,0675	0,0500
24	0,3434	0,2354	0,1907	0,1656	0,1493	0,1304	0,1286	0,1216	0,1160	0,1113	0,0940	0,0743	0,0567	0,0417
30	0,2929	0,1908	0,1593	0,1377	0,1237	0,1137	0,1061	0,1002	0,0958	0,0921	0,0771	0,0604	0,0457	0,0333
40	0,2370	0,1576	0,1259	0,1082	0,0968	0,0887	0,0827	0,0780	0,0745	0,0713	0,0595	0,0462	0,0347	0,0250
60	0,1737	0,1131	0,0865	0,0765	0,0682	0,0623	0,0583	0,0552	0,0520	0,0497	0,0411	0,0316	0,0234	0,0167
120	0,0998	0,0632	0,0495	0,0419	0,0371	0,0337	0,0312	0,0292	0,0279	0,0266	0,0218	0,0165	0,0120	0,0083
∞	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BUT

Приложение 6

Значение критерия Фишера *F*_T

Степень свободы	Степень свободы для большей дисперсии f ₂																		
для меньшей	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
дисперсии f ₁			12	7															
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,225	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,12	2,07
16	4,49	3,63	3,24	3,01	2,,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,69
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22	2,15	2,07	1,99	1,95	1,90	1,85	1,80	1,75	1,67
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20	2,13	2,06	1,97	1,93	1,88	1,84	1,79	1,73	1,65
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,64
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18	2,10	2,03	1,94	1,90	1,85	1,81	1,75	1,70	1,62
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,51
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,39
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,25
120	3,922	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,00
									40						0	>			

Q,

m	Вариа	нт 1	4	Вариа	нт 2		Вариан	нт 3		Вариа	нт 4		Вариант 5			
	X1	X ₂	Y	X_1	X_2	Y	X_1	X_2	Y	X ₁	X ₂	Y	X ₁	X ₂	Y	
1	285	3,8	9,2	437	10	45	685	15,5	25	960	17,2	99	835	9,8	101	
2	380	6,6	12,2	425	13,4	41	680	15	28	965	17,2	87	1075	14,8	107	
3	240	4,2	8,5	465	12,4	48	660	12,2	20	985	18,2	112	1195	13,7	101	
4	260	3,1	10,4	450	12	47	660	13,4	25	930	14	74	1015	13	107	
5	355	4,4	9,8	430	9,8	42	645	12	20	935	14,4	81	1025	13,9	113	
6	165	2,4	8,5	450	11,4	46	685	14,2	25	950	14,6	99	1035	15,6	101	
7	390	4,1	10,4	450	12,4	46	630	11,4	18	985	17,2	105	995	13,9	107	
8	165	5	11,6	465	13,4	47	675	14,2	28	940	15,6	87	885	12,2	95	
9	390	6,8	11,6	465	12,6	48	655	13	28	960	17	112	965	11,6	88	
10	320	4	10,4	405	8,8	40	645	12,6	19	960	16,6	93	1175	15,2	120	
								QL								

Исходные данные: X₁ + разрывная нагрузка пряжи, cH; X₂ – разрывное удлинение пряжи, %; Y – линейная плотность пряжи, текс;*m* – количество испытаний.

m	В	ариант	6	Ba	риант 7		Вариант 8			-	Вариант	г 9	Вариант 10		
111	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y
1	580	9,9	56	1055	14	90	465	7,8	41	750	10,6	76	985	17,2	115
2	440	7,2	44	1190	15	102	675	12,7	59	775	13,4	70	930	14,4	83
3	755	13,8	62	1175	15,4	114	580	11	41	875	14,5	94	975	17,2	122
4	705	11	44	1050	15	96	775	13	70	700	12,8	82	955	16	122
5	535	9,3	44	1020	13,7	84	470	8	53	600	10,1	70	945	15,6	90
6	490	8,8	33	1075	14,7	90	575	9,9	57	495	8,3	64	985	13,8	92
7	565	11	56	1095	15,4	108	675	11	63	595	11,2	88	1135	16,6	122
8	560	11,1	50	1075	14,4	96	575	10,4	51	665	13,2	94	940	11,5	85
9	550	11,9	44	795	9,4	78	650	12,3	69	765	13	70	960	13,1	104
10	775	13,1	62	1050	14,4	102	690	12,5	71	820	13,4	82	1055	14,4	98

O4

продолжение приложения 7

122	Ba	риант 1		Bap	оиант 1	2	B	ариант 1	3	Ba	риант 1-	4	Ba	риант 1	5
m	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y
1	2120	10,7	195	1120	15,7	95	435	10	29	965	10,8	84	550	7,1	68
2	2170	11,9	213	1170	16,9	113	295	8,2	16	1135	14,8	90	765	13,6	99
3	1935	8,3	177	935	13,3	77	245	6,6	18	1270	16,6	120	650	10,3	86
4	2120	11,2	219	1120	16,2	119	200	5,4	16	1055	13,6	96	1030	15,6	99
5	2060	11,5	213	1060	16,5	113	460	10,2	29	1055	13,8	102	975	13,6	80
6	2120	10,7	195	1120	15,7	95	565	11	35	1075	18,5	114	800	11,1	74
7	2055	10,3	201	1055	15,3	101	360	7,7	23	965	12,1	90	875	12,6	93
8	2000	8,2	213	1000	13,2	113	295	5,6	14	910	12,6	102	905	14,5	105
9	2230	10,9	189	1230	15,9	89	250	7,1	14	855	13,3	108	750	11,2	75
10	1875	6,7	183	875	11,7	83	515	9,8	29	1020	14	108	855	12,8	80
							14	$\mathbf{\lambda}$							

m	Ba	ариант 1	6	Ba	ариант 1	7	Ba	ариант 1	8	Ba	ариант 1	9	Ba	риант 2	20
111	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y	X1	X2	Y
1	675	10,5	61	985	17,2	115	1075	18,5	114	550	7,6	48	365	10	7,5
2	405	6,2	36	930	14,4	83	965	12,1	90	575	10,4	45	260	5,7	6,3
3	610	8,6	55	975	17,2	122	910	12,6	102	675	11,5	67	155	4,6	5,4
4	635	10,3	55	955	16	122	855	13,3	108	500	9,8	56	150	6,1	5,4
5	635	11	67	945	15,6	90	1020	14	108	400	7,1	42	315	8,8	7,9
6	470	6,7	42	985	13,8	92	750	9,1	88	395	5,3	45	220	8,7	5,5
7	540	11	73	1135	16,6	122	965	15,6	119	275	8,2	54	155	8,3	6,1
8	520	10,3	67	940	11,5	85	850	12,3	106	365	10,2	57	200	6,2	7,3
9	435	5,6	42	960	13,1	104	1230	17,6	119	465	10	45	330	8,9	5,9
10	550	8,7	49	1055	14,4	98	1175	15,6	100	520	10,4	51	210	5,7	5,8
											- C	4			
							42								
							42						$\mathbf{>}$		

			B4	Значен	ие слу	чайно	ой вел	ичин	ы Үі і	no pea	зульта	атам пр	оведен	нного	экспе	еримен	та	Пр	илож	ение 8
				-					He	мер	вари	антя								
m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	800	850	610	1600	980	770	680	805	700	583	310	900	650	780	600	1000	990	560	480	950
2	645	845	690	1400	925	615	785	725	660	520	400	1100	750	800	720	1070	800	600	540	1400
3	600	765	770	1120	825	540	815	750	710	495	420	1240	840	570	725	1150	820	440	555	1170
4	585	520	750	1390	1060	835	755	705	775	590	415	920	1050	650	765	1200	850	465	480	1350
5	765	715	840	1350	1020	885	720	730	780	550	470	1150	1000	700	800	1400	700	570	520	1450
6	705	905	880	1150	815	815	710	690	790	500	325	1250	1030	770	870	1500	480	480	520	1250
7	650 670 800 1550 850 705 745 750 740 555 480 1120 520 840 890 920 500 475 595 1270 600 650 850 1130 980 570 840 650 830 505 390 1230 690 765 520 1100 630 500 510 1480 770 775 450 1030 770 765 810 750 470 435 1300 800 790 735 950 980 575 570 900																			
8	650 670 800 1550 850 705 745 750 740 555 480 1120 520 840 890 920 500 475 595 1270 600 650 850 1130 980 570 840 650 830 505 390 1230 690 765 520 1100 630 500 510 1480 770 775 450 1080 1030 770 765 810 750 470 435 1300 800 790 735 950 980 575 570 900																			
9	600 650 850 1130 980 570 840 650 830 505 390 1230 690 765 520 1100 630 500 510 1480 770 775 450 1080 1030 770 765 810 750 470 435 1300 800 790 735 950 980 575 570 900 710 765 600 950 775 790 915 705 650 560 460 1380 990 600 770 1090 900 475 520 1270																			
10	600 650 850 1130 980 570 840 650 830 505 390 1230 690 765 520 1100 630 500 510 1480 770 775 450 1080 1030 770 765 810 750 470 435 1300 800 790 735 950 980 575 570 900 0 710 765 600 950 775 790 915 705 650 560 460 1380 990 600 770 1090 900 475 520 1270 1 655 705 700 915 705 650 560 460 1380 990 600 770 1090 900 475 520 1270 1 655 705 705 705 705 705 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505																			
11	655	705	700	1170	1060	825	775	765	780	500	535	1450	770	830	820	1280	820	485	560	1460
12	520	810	785	1160	1120	740	780	775	610	470	330	1270	1020	870	780	1390	840	505	520	1250
13	825	650	810	1150	1045	710	685	650	770	420	540	1190	1050	620	790	1120	720	480	583	1100
14	780	750	820	1500	1190	720	720	670	805	595	440	1400	820	860	550	1130	970	450	545	1150
15	715	690	705	1380	1105	835	710	905	815	540	540	1210	970	670	785	1140	870	590	500	1150
16	660	730	460	970	925	725	600	715	860	480	420	1400	1150	820	740	1250	740	470	540	1150
17	615	705	550	1180	1135	740	585	520	825	480	385	1480	760	690	900	1110	650	475	530	1030
18	665	750	820	1600	1070	555	820	490	590	565	335	1200	990	770	620	1010	750	480	540	1000
19	785	725	850	1280	850	800	610	765	715	545	410	1320	1000	785	710	1320	835	465	480	950
20	720	805	790	1150	1115	670	940	845	650	510	415	950	600	720	850	1190	890	540	550	1200
21	640	745	700	1000	670	850	720	850	675	515	450	1000	650	795	540	1300	960	460	545	1300
22	580	750	830	1200	900	845	845	745	650	570	455	1180	800	590	690	1170	910	470	520	1350
23	670	870	470	1190	1065	765	905	750	750	490	340	1140	700	795	715	920	840	485	525	1200
										43	5						6			

OL.

Продолжение приложения 8

24	790	620	840	1420	900	520	520	870	775	570	430	1080	1000	640	570	1200	950	550	585	1300
25	725	735	900	1120	890	715	590	620	850	525	350	1290	900	800	795	1520	680	470	500	1050
26	620	645	780	1220	1045	905	740	735	800	525	435	960	940	650	630	1210	790	485	480	1350
27	830	770	680	1150	1105	670	755	645	745	500	440	1120	790	680	690	940	990	535	515	940
28	920	635	1050	1070	1025	650	690	770	740	530	380	1260	700	685	700	1070	800	470	530	1330
29	675	620	820	1450	840	775	860	635	760	480	475	990	870	760	740	1420	825	480	540	1050
30	795	720	650	1280	925	765	750	620	680	470	355	1200	850	805	635	1480	600	490	515	1400
31	730	770	860	1250	900	705	655	720	780	480	440	1280	950	770	650	950	940	490	510	1500
32	640	615	500	980	1020	810	755	770	690	440	450	1330	1020	700	725	1160	900	460	435	1250
33	700	540	720	1020	1175	650	830	615	710	450	380	1000	720	750	760	1260	775	545	505	1150
34	810	835	670	1460	865	750	820	540	770	535	490	1100	730	850	790	1440	570	495	410	1200
35	735	885	800	1000	850	690	640	835	925	480	520	1300	850	715	660	960	930	475	450	1250
36	840	815	920	840	790	730	700	885	820	490	370	1350	1050	810	700	1080	810	495	480	1400
37	805	705	950	1230	850	705	730	815	870	540	415	1020	970	660	750	1190	805	500	530	1150
38	695	570	620	1100	890	750	805	705	815	520	400	1240	1080	720	700	970	770	500	485	1200
39	740	770	740	1480	1030	725	620	570	830	460	425	1090	900	710	840	1050	795	465	450	1120
40	860	790	870	1030	1075	805	785	770	715	545	460	1330	890	815	800	1210	710	505	485	1350
41	875	825	650	1300	780	745	680	790	570	500	365	1050	1100	740	675	1400	920	470	495	1300
42	815	740	880	1240	950	750	560	825	640	550	410	1190	1150	730	825	1550	860	505	450	1200
43	745	710	690	1060	965	870	880	740	680	450	400	1070	880	925	660	980	945	495	480	1100
44	870	720	600	850	945	620	790	710	615	530	430	1280	1100	900	840	1500	780	500	500	1200
45	850	835	750	1490	965	735	880	720	700	510	360	1370	1200	820	770	1200	725	500	455	1300
46	880	725	810	1270	950	645	825	835	630	525	500	1410	1300	840	850	1180	520	495	510	1050
47	940	740	570	900	955	770	790	725	720	410	545	1400	1360	870	780	990	550	485	480	1170
48	750	555	800	920	900	635	685	740	835	500	375	1500	1320	825	905	1100	955	490	455	1280
49	755	800	1000	940	1080	620	825	555	835	520	400	1330	920	750	710	1050	750	500	485	1000
50	880	670	820	1200	1050	720	800	800	780	520	405	1320	930	800	685	1000	965	450	465	1200
										44	1									

Значение XuYui для различных вариантов

		Вариан	ат 1	5	6			Вариан	т 2				E	Зариан	іт 3					Вариа	ант 4		
Xu	50	100	150	200	250	-Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250
Yu1	1110	1100	900	860	820	Yu1	1160	1010	930	800	770	Yu1	1100	930	850	740	640	Yu1	1210	980	860	820	650
Yu2	1060	1050	910	900	760	Yu2	1150	1000	910	830	750	Yu2	1030	980	810	700	690	Yu2	1140	970	800	770	740
Yu3	1110	1040	950	890	770	Yu3	1100	1000	900	850	740	Yu3	1080	950	870	760	640	Yu3	1100	1000	820	760	660
Yu4	1090	1010	890	870	750	Yu4	1120	980	940	820	720	Yu4	1030	950	820	730	610	Yu4	1040	1020	830	770	650
Yu5	1150	1110	920	850	740	Yu5	1170	950	900	850	730	Yu5	1040	910	880	780	670	Yu5	1090	1050	890	810	700
								2															
								C>															

		Вариа	нт 5					Вариа	ант 6					Вариа	нт 7					Вари	ант 8		
Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250
Yu1	1150	1010	860	820	650	Yu1	930	880	710	680	520	Yu1	1150	1100	980	810	710	Yu1	1200	930	870	760	450
Yu2	1090	1000	800	770	740	Yu2	980	810	740	620	510	Yu2	1090	1050	810	910	760	Yu2	1210	1050	915	820	460
Yu3	1100	1000	820	760	660	Yu3	990	870	780	680	540	Yu3	1100	980	950	920	750	Yu3	1200	1040	930	830	400
Yu4	1210	980	830	770	650	Yu4	930	840	790	640	580	Yu4	1210	1150	980	870	820	Yu4	1165	1050	990	840	440
Yu5	1070	950	890	810	700	Yu5	970	830	770	630	550	Yu5	1070	980	850	860	790	Yu5	1110	960	950	800	460
												0											
													6.										

		Вариа	нт 9]	Вариан	т 10					Вариан	ит 11]	Вариан	т 12		
Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250
Yu1	1160	930	930	800	770	Yu1	1100	930	980	800	650	Yu1	1210	1100	900	860	770	Yu1	1110	1100	900	860	820
Yu2	1150	1050	910	830	750	Yu2	1060	1050	810	830	740	Yu2	1140	1050	910	900	750	Yu2	1060	1050	910	900	760
Yu3	1100	1040	900	850	740	Yu3	1110	1040	950	850	660	Yu3	1100	1040	950	890	740	Yu3	1110	1040	950	890	770
Yu4	1120	1050	940	820	720	Yu4	1090	1050	980	820	650	Yu4	1040	1010	890	870	720	Yu4	1090	1010	890	870	750
Yu5	1170	960	900	850	730	Yu5	1150	960	850	850	700	Yu5	1090	1110	920	850	730	Yu5	1150	1110	920	850	740
											45					.7	60	C47	2				

продолжение приложения 9

			Ø4														ŀ	прода	пжен	ue nu	00703	<i>кони</i>	а 9
		Вариа	нт 13	- 6]	Вариа	нт 14					Вариан	нт 15		-			Вариан	<u>т 16</u>		
Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250
Yu1	1150	980	880	680	710	Yu1	1210	930	860	740	650	Yu1	1200	1010	870	820	450	Yu1	1120	1020	990	820	670
Yu2	1090	810	810	620	760	Yu2	1140	980	800	740	700	Yu2	1210	1000	915	770	460	Yu2	1050	1000	810	830	760
Yu3	1100	950	870	680	750	Yu3	1100	950	820	760	660	Yu3	1200	1000	930	760	400	Yu3	1110	1000	950	850	660
Yu4	1210	980	840	640	820	Yu4	1040	950	830	730	650	Yu4	1165	980	990	770	440	Yu4	1090	980	980	820	650
Yu5	1070	850	830	630	790	Yu5	1090	910	890	780	700	Yu5	1110	950	950	810	460	Yu5	1150	950	850	850	700
							Y																

		Вариан	нт 17					Вариан	ат 18					Вариан	іт 19]	Вариа	нт 20		
Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250	Xu	50	100	150	200	250
Yu1	1210	1100	900	860	770	Yu1	1100	980	850	830	640	Yu1	1150	930	860	760	650	Yu1	1100	930	710	810	520
Yu2	1140	1050	910	900	750	Yu2	1030	970	810	770	690	Yu2	1090	1050	800	820	740	Yu2	1050	980	740	910	510
Yu3	1100	1040	950	890	740	Yu3	1080	1000	870	760	640	Yu3	1100	1040	820	830	660	Yu3	980	930	780	920	540
Yu4	1040	1010	890	870	720	Yu4	1030	1020	820	770	610	Yu4	1210	1050	830	840	650	Yu4	1150	990	790	870	580
Yu5	1090	1110	920	850	730	Yu5	1040	1050	880	810	670	Yu5	1070	960	890	800	700	Yu5	980	970	860	770	550
												txyo	7012		KAN Y	J.J.	BOA	OC4					
											46)							0				

		•	BLIT			r	Значен	ие Үі	для ра	ЗЛИЧНІ	ых вар	иантов	5			J	Прило	жение	e 10
Вари	ант 1	Вариа	нт 2	Вариа	нт 3	Вариа	нт 4	Вариа	нт 5	Вариа	нт б	Вариа	нт 7	Вариа	нт 8	Вариа	нт 9	Вариа	нт 10
1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я	1-я	2-я
повт	ПОВТ.	повт.	повт.	повт.	повт.	повт.	повт.	повт.	повт.	повт.	повт.	повт.	повт.						
920	900	845	855	730	740	510	490	415	440	630	620	440	460	725	735	400	420	740	760
870	890	880	860	765	753	570	590	465	435	645	655	490	510	775	740	430	450	790	810
950	930	920	900	805	780	600	640	515	485	710	695	580	620	800	790	490	502	890	910
920	945	900	915	830	825	585	615	505	495	700	670	575	605	805	790	450	490	900	890
880	900	945	935	810	820	480	520	510	505	650	720	485	495	820	805	492	508	770	810
900	890	905	935	850	825	615	635	495	525	697	700	540	580	795	820	550	570	840	880
910	880	965	940	890	910	690	670	525	500	714	740	685	695	840	815	600	580	980	1000
870	885	1005	1020	880	890	680	720	580	605	796	780	645	675	895	910	635	605	955	965
									4										

Вариа	нт 11	Вариа	нт 12	Вариа	нт 13	Вариа	нт 14	Вариа	нт 15	Вариа	нт 16	Вариа	нт 17	Вариа	нт 18	Вариа	нт 19	Вариа	нт 20
1-я	2-я																		
повт.																			
620	630	800	820	310	290	320	330	845	855	140	160	1040	1060	1400	1420	1510	1490	2510	2490
655	645	820	860	360	400	340	360	860	870	195	210	1090	1110	1430	1450	1570	1590	2570	2590
690	710	890	900	410	430	410	390	920	950	280	320	1190	1210	1490	1502	1600	1640	2600	2640
670	700	890	850	385	415	445	395	960	990	275	305	1200	1190	1450	1490	1585	1615	2585	2615
630	650	890	910	290	310	435	415	945	955	185	195	1070	1120	1492	1508	1480	1520	2480	2520
720	690	950	970	420	430	395	415	890	920	240	280	1140	1180	1550	1570	1615	1635	2615	2635
700	680	980	1000	470	490	470	420	990	1000	385	395	1280	1300	1600	1580	1690	1670	2690	2670
645	670	1025	1015	480	520	525	515	1020	1100	345	375	1255	1265	1635	1605	1680	1720	2680	2720
									۷	17					Chi	~~~			

	Ø								
	7× CC		Значені	ие Үі для ра	азличных ва	риантов		П	риложение
Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7	Вариант 8	Вариант 9	Вариант 10
10,2	2102	62	202	142	1102	3142	620	580	4062
10,9	2109	69	109	149	1109	3149	690	450	4069
12,7	2127	83	127	167	1127	3167	830	520	4083
6,4	2064	24	64	104	1064	3104	240	670	4024
11,8	2118	78	118	158	1118	3158	780	630	4078
9,3	2093	53	93	133	1093	3133	530	680	4053
7,4	2074	34	74	114	1074	3114	340	610	4034
5,4	2054	14	54	94	1054	2994	140	645	4014
8,2	2082	31	82	122	1082	3122	310	740	4031
	·			My Com		·	·		·

Вариант	Вариант	Вариант							
11	12	13	14	15	16	17	18	19	20
1580	370	1880	3070	7620	2580	880	2300	3700	5800
1450	240	1750	2040	7690	2450	750	1000	2400	4500
1520	310	1820	3010	7830	2520	820	1700	3100	5200
1670	460	1970	4060	7240	2670	970	3200	4600	6700
1630	420	1930	4020	7780	2630	930	2800	4200	6300
1680	470	1980	4070	7530	2680	980	3300	4700	6800
1610	400	1910	4000	7340	2610	910	2600	4000	6100
1645	435	1945	4035	7140	2645	945	2950	4350	6450
1740	330	2040	3030	7310	2740	1040 🌙	1900	3300	7400
				4	8		AB CD CL	Z R R	