УДК 685.34.004.12.001

ИЗУЧЕНИЕ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ОБУВИ С МАТЕРИАЛАМИ ПОДКЛАДКИ РАЗЛИЧНЫХ СТРУКТУР ПО ТЕПЛОФИЗИЧЕСКИМ ХАРАКТЕРИСТИКАМ

3.Е. Ковчур, Е.А. Шеремет (ВГТУ, г. Витебск)

Одно из направлений в создании ресурсосберегающих направлений в обувной промышленности — использование в производстве технологических материалов, в частности, трикотажных и нетканых полотен для подкладки обуви.

В работе изучались теплофизические характеристики — темп охлаждения (m), коэффициент теплопроводности (λ) и суммарное тепловое сопротивление (r).

В реальных условиях производства были изготовлены полуботинки с подкладкой из материалов различных структур — нетканого холстопрошивного полотна арт. ОП-17-4220-78, тик-саржи, трикотажа арт. 846, трикотажа арт. 856.

Исследования теплофизических величин проводили на установке, представляющей собой моделированный прибор. В качестве теплоносителей использовалась свинцовая дробь, которая во время опыта носила функцию стопы. В прибор вводились хромкопелевые термопары, зачеканенные в носочной части обуви, в пяточной вблизи подошвы и приблизительно в центре.

При выборе температурного режима испытаний учитывались возможные периоды носки обуви.

В таблице представлены средние значения анализируемых теплофизических характеристик при температурах окружающей среды 0^{0} C, 10^{0} C, 20^{0} C.

Таблица Средние значения теплофизических характеристик обуви

Температура	Материал	Темп охлаж-	Коэффициент	Суммарное
окружающей	подкладки	дения, m	теплопро-	тепловое со-
среды			водности,	против-ение,
			$\lambda \times 10^{-2}$,	$R \times 10^{-2}$,
			Вт/м-0С	Вт/м ^{.0} С
0°C	Тик-саржа	1,18	2,93	2,42
0°C	Нетканое по- лотно	1,12	2,62	2,68
0°C	Трикотаж арт. 846	0,92	2,25	3,14
0°C	Трикотаж арт. 856	0,82	2,02	3,52
10°C	Тик-саржи	1,29	3,20	2,21
10°C	Нетканое по- лотно	1,10	2,72	2,57
10°C	Трикотаж арт. 846	1,02	2,50	2,82
10 ⁰ C	Трикотаж арт. 856	0,93	2,30	3,08
20°C	Тик-саржа	1,40	3,30	2,02
20 ⁰ C	Нетканое по- лотно	1,34	3,28	2,31
20 ⁰ C	Трикотаж арт. 846	1,13	2,81	2,50
20 ⁰ C	Трикотаж арт. 856	1,04	2,62	2,67

Данные таблицы позволяют сделать вывод о влиянии на теплофизические характеристики не только климатических параметров (в частности температуры окружающей среды), но и вида материала подкладки верха обуви. Подбирая её, можно изготавливать обувь с оптимальными комфортными свойствами. Например, для обуви предназначенной для носки в более холодные периоды, из исследуемых материалов можно рекомендовать трикотажные полотна.