Чтобы оценить степень влияния поверхности на движение дислокаций, возьмем отношение сил торможения F_{d2} в приповерхностном слое, где влияние поверхности доминирует, и F_{d1} в слое, где оно не существенно

$$\frac{F_{d2}}{F_{d1}} = \left(\frac{L}{l}\right)^2 \tag{10}$$

Выполним численные оценки. Для значений $n_{0V} \approx 10^{-4}$, $\epsilon \approx 10^{-1}$, $L \approx 10b$ получим $(F_{d2}/F_{d1}) \approx 10^{-2}$, то есть наличие поверхности приводит к уменьшению силы торможения на два порядка. Таким образом, наличие поверхности значительно снижает влияние точечных дефектов на скольжение дислокаций в приповерхностной области.

Оценим толщину приповерхностного слоя, в пределах которого поверхность оказывает существенное влияние на динамическое взаимодействие дислокаций с точечными дефектами. Для типичных значений $c = 3 \cdot 10^3 \text{ м/c}$, $b = 3 \cdot 10^{-10} \text{ м}$, $n_{0V} \approx 10^{-2} \div 10^{-6}$, $v \approx 10^{-2} \div 10^{-1} c$ получим, что толщина оцениваемого слоя может составлять от нескольких нанометров до нескольких десятков нанометров.

Таким образом, можно сделать вывод, что силы изображения полностью блокируют влияние поверхностных точечных дефектов и значительно снижают влияние объемно распределенных точечных дефектов на динамическое скольжение дислокаций в наноматериалах, т.е. облегчают пластическое деформирование мягких металлов, имеющих нанометровые размеры и содержащих примеси высокой концентрации.

Список литературы

- Kodambaka S., S. V. Khare, W. Swich, K. Ohmori, I. Petrov, J. E. Greene. // Nature. 2004. Vol. 429. – P. 49–52.
- 2. Головин Ю. И. // ФТТ. 2008. Т. 50, № 12. С. 2113–2142.
- 3. Малыгин Г. А. // ФТТ. 2007. Т. 49, № 6. С. 961–982.
- 4. Liu X. H., F. M. Ross, K. W. Schwarz. // Phys. Rev. Lett. 2000. Vol. 85, № 19. P. 4088-4091.
- 5. Малашенко В. В. // Кристаллография. 2009. Т. 54, № 2. С. 312–315.
- 6. Малашенко В. В. // ФТТ. 2009. Т. 51, № 4. С. 703–705.
- 7. Малашенко В. В. // ЖТФ. 2009. Т. 79, № 4. С. 146–149.
- 8. Malashenko V. V. // Modern Phys. Lett. B. 2009. Vol. 23, № 16. P. 2041–2047.
- 9. Malashenko V. V. // Physica B: Phys. Cond. Mat. 2009. Vol. 404, № 21. P. 3890–3893.

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ КРАЕВЫХ ДИСЛОКАЦИЙ В КРИСТАЛЛАХ В УСЛОВИЯХ ВЫСОКОГО ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

Малашенко В.В.

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина, <u>malashenko@kinetic.ac.donetsk.ua</u> Донецкий национальный технический университет, Донецк, Украина

Движение дислокаций и их взаимодействие друг с другом, с другими дефектами, а также с фононами, электронами, магнонами, оказывает огромное влияние на механические свойства реального кристалла [1-3]. Важным и пока что недостаточно изученным аспектом динамики дислокаций является их взаимодействие с точечными дефектами кристаллической решетки (вакансии, примеси, междоузельные атомы), которые присутствуют практически во всех реальных кристаллах и при высоких концентрациях могут оказывать доминирующее влияние на движение дислокаций, а, следовательно, и на процесс пластической деформации, особенно в случае, когда это взаимодействие приобретает коллективный характер.

Известно [1], что механизмы торможения быстрых и медленных дислокаций отличаются коренным образом. Медленно движущиеся дислокации преодолевают барьеры, связанные с точечными дефектами, с помощью термических флуктуаций. По мере возрастания скорости дислокаций их кинетическая энергия достигает высоты энергетических барьеров, появляется возможность динамического преодоления препятствий. Надбарьерное скольжение дислокаций реализуется при высокоскоростном деформировании и ударных нагрузках, а также при исследовании кристаллов методом внутреннего трения. Скорость пластической деформации $\dot{\varepsilon}_d$, как известно, связана с плотностью подвижных дислокаций ρ_d и средней скоростью движения дислокаций ν соотношением $\dot{\varepsilon}_d = b\rho_d v$. Динамическое (надбарьерное) скольжение дислокаций реализуется обычно при скоростях деформации $\dot{\varepsilon}_d \ge 10^3 \text{ s}^{-1}$ и средней скорости движения дислокаций $\nu \ge 10^{-2}c$, где c – скорость распространения поперечных звуковых волн в кристалле.

Согласно экспериментальным данным (см., например, [4]), сила торможения дислокации примесными центрами имеет квазивязкий характер, т.е. линейно растет с ростом скорости. Однако согласно теоретической работе [5], сила динамического торможения дислокации точечными дефектами должна быть обратно пропорциональна скорости дислокационного скольжения. Объяснить квазивязкий характер динамического торможения можно лишь с учетом коллективных эффектов.

Динамическое взаимодействие дефектов с дислокацией в зависимости от скорости дислокационного скольжения может иметь как коллективный характер, так и характер независимых столкновений [6,7]. Обозначим время взаимодействия дислокации с атомом примеси $\tau_{def} \approx R/v$, где R – радиус дефекта, время распространения возмущения вдоль дислокации на расстояние порядка среднего расстояния между дефектами обозначим $\tau_{dis} \approx l/c$. В области независимых столкновений $v > v_0 = R\Delta_d$ выполняется неравенство $\tau_{def} < \tau_{dis}$, т.е. элемент дислокации за время взаимодействия с точечным дефектом не испытывает на себе влияния других дефектов. В области коллективного взаимодействия ($v < v_0$), наоборот, $\tau_{def} > \tau_{dis}$, т.е. за время взаимодействия дислокации с точечным дефектов, вызвавших возмущение дислокационной формы.

Рассмотрим краевую дислокацию, движущуюся под действием постоянного внешнего напряжения σ_0 в кристалле, содержащем хаотически распределенные точечные дефекты. Направим ось ОZ параллельно линии дислокации, а ее вектор Бюргерса параллельно оси ОХ, в положительном направлении которой происходит скольжение дислокации с постоянной скоростью v. Элементы дислокации могут совершать малые колебания в плоскости скольжения XOZ. Положение дислокации определяется функцией X(z, t) = vt + w(z, t), где w(z,t) – случайная величина, среднее значение которой по ансамблю дефектов и расположению элементов дислокации равно нулю.

Уравнение движения дислокации имеет следующий вид

$$m\frac{\partial X^{2}(z,t)}{\partial t^{2}} + \beta \frac{\partial X(z,t)}{\partial t} - T\frac{\partial^{2} X(z,t)}{\partial z^{2}} = b \Big[\sigma_{0} + \sigma_{xy}(vt + w;z)\Big].$$
(1)

Здесь *T* – коэффициент линейного натяжения дислокации, *m* – масса единицы длины дислокации.

Выражение для силы торможения дислокации точечными дефектами имеет вид 162

$$F_{d} = \frac{nb^{2}}{8\pi^{2}m} \int d^{3}p \left| p_{x} \right| \left| \sigma_{xy}(p) \right|^{2} \delta(p_{x}^{2}v^{2} - \omega^{2}(p_{z})), \qquad (2)$$

где интегрирование производится по всему импульсному пространству, n – объемная концентрация точечных дефектов, $\delta(p_x^2v^2 - \omega^2(p_z))$ – это δ -функция Дирака, $\omega(p_z) = \sqrt{\Delta^2 + c^2 p_z^2}$ – закон дисперсии дислокационных колебаний. Коллективное взаимодействие дефектов с дислокацией приводит к тому, что спектр дислокационных колебаний становится нелинейным: в нем возникает активация.

$$\Delta = \frac{c}{b} \left(n_0 \varepsilon^2 \right)^{1/3},\tag{3}$$

где n_0 – безразмерная концентрация точечных дефектов, $n_0 = nR^3$, где R – радиус дефекта, ε – параметр несоответствия дефекта. Сила торможения в этом случае равна

$$F_{d} = \frac{B_{d}v}{1 + v^{2}/v_{0}^{2}}, \qquad B_{d} = \frac{\pi n_{0}^{1/3}\mu^{2}\varepsilon^{2/3}b^{4}}{3mc^{3}R}$$
(4)

 μ – модуль сдвига. Выполним численные оценки для сравнения с экспериментальными данными. Так, согласно [4], для дислокаций, движущихся со скоростью 10 м/с в кристалле с примесями, концентрация которых составляет $n_0 \sim 10^{-3}$, сила торможения дислокации примесями линейно зависит от скорости дислокационного скольжения, обусловленный примесями вклад в константу демпфирования составляет по порядку величины $10^{-4} \Pi a \cdot c$. Согласно приведенным выше формулам, при таких значениях скорости и концентрации взаимодействие дефектов с дислокацией имеет коллективный характер, сила торможения дислокации определяется выражением $F_d = B_d v$, где $B_d \approx 10^{-4} \Pi a \cdot c$.

Как известно, краевые дислокации, расположенные в параллельных плоскостях скольжения, способны образовывать устойчивые конфигурации, выстраиваясь одна над другой [8]. Этот процесс является основой полигонизации, в результате которой в кристаллах возникают дислокационные стенки. Под действием внешних напряжений такие образования могут перемещаться по кристаллу [9]. Особый интерес представляет движение таких дислокаций в гидростатически сжатых кристаллах. Высокое гидростатическое давление способствует пластификации кристаллических тел, оказывая влияние как на величину упругих модулей кристалла, так и величину взаимодействия дислокаций между собой, что приводит к возникновению специфических особенностей пластической деформации в гидростатически сжатых кристаллах [10,11].

Рассмотрим две бесконечные краевые дислокации, движущиеся под действием постоянного внешнего напряжения σ_0 в поле параллельных им закрепленных краевых дислокаций, случайным образом распределенных в объеме гидростатически сжатого кристалла [12]. Линии дислокаций параллельны оси ОZ, их векторы Бюргерса параллельны оси ОХ, в положительном направлении которой происходит скольжение дислокаций. Дислокации движутся с постоянной скоростью v в параллельных плоскостях скольжения. Расстояние между плоскостями скольжения обозначим *а*. Движение каждой дислокации описывается уравнением типа уравнения (1), если его правую часть дополнить силой взаимодействия дислокаций между собой. Активация, возникающая в спектре дислокационных колебаний в результате взаимодействия дислокаций между собой, зависит от величины гидростатического давления [12]

$$\Delta(p) = \Delta(0)\sqrt{1 + Kp}; \qquad \Delta(0) = \frac{c}{a}\sqrt{\frac{2}{\ln(L/r_0)}}$$
(5)

где К - коэффициент, зависящий от упругих модулей кристалла.

Сила торможения пары дислокаций неподвижными дислокациями благодаря давлению значительно возрастает

$$F = F(0)(1 + Kp)^{\frac{3}{2}}; \qquad F(0) = \frac{nb^{4}\tilde{\mu}^{2}}{16m\omega_{0}(1 - \tilde{\gamma})^{2}v}$$
(6)

Знак ~ указывает на то, что значения соответствующих величин взяты для гидростатически сжатого кристалла.

Наиболее сильно влияние гидростатического сжатия проявляется в щелочногалоидных кристаллах. Например, при давлении 10⁹ Ра в кристаллах иодида калия сила торможения дислокационной пары неподвижными дислокациями возрастает в полтора раза.

Список литературы

- 1. Альшиц В.И., Инденбом В.Л. // УФН.-1975.-Т. 115, № 1.-С. 3-39.
- 2. Каганов М.И., Кравченко В.Я., Нацик В.Д. // УФН.-1973.-Т.111, №4.-С.655- 682.
- 3. Барьяхтар В.Г., Друинский Е.И. // ЖЭТФ.-1977.-Т.72, №1.- С. 218-224.
- 4. Kaneda T . // J. Phys. Soc. Japan.-1970.-V.28, №5.-P.1205-1211.
- 5. Natsik V.D., K.A. Chishko K.A. // Crystal Res. and Technol.-1984.-V. 19, № 6.- P.763.
- 6. Malashenko V.V., Sobolev V.L., Khudik B.I. // Phys. stat. sol. (b).-1987.- Vol.143,
- 7. №2. –P. 425–431.
- 8. Малашенко В.В. // ФММ.-2005.-Т.100, №6.-С. 1-4.
- 9. Хирт Д., Лоте И. Теория дислокаций. М.: Наука, 1972.- 599 с.
- 10. 9. Малашенко В.В. // ФТТ.-2006.- Т.48, №3.-С.433-435.
- 11. Токий В.В., Зайцев В.И.. // ФТТ.- 1973.- Т.15, № 8.- С.2460-2467.
- 12. Косевич А.М., Токий В.В., Стрельцов В.А. // ФММ.- 1978.- Т.45, № 6.- С. 1135.
- 13. Малашенко В.В. // ЖТФ.-2006-Т.76,№6.-С.127-129.

ВЗАИМОДЕЙСТВИЕ НИКЕЛЯ И МОЛИБДЕНА С ГАЗАМИ ВОЗДУХА ПОД ДЕЙСТВИЕМ ИСКРОВЫХ РАЗРЯДОВ

Герцрикен Д. С., Мазанко В. Ф., Чао Шенжу, Чжан Цженю, Миронов Д. В., Миронов В. М.

Институт металлофизики им. Г.В.Курдюмова НАНУ, Киев, Украина, dina izotop@mail.ru

Северо-западный политехнический университет, Сиань, Китай, <u>blao@nwpu.edu.cn</u> Самарская государственная сельскохозяйственная академия, п. Усть-Кинельский Самарской обл., Россия, dvonorim@mail.ru

Ранее было показано, что в результате воздействия на металл искровых разрядов происходит введение в металл и дальнейшая миграция атомов не только анода и поверхностного слоя, но и среды, в которой осуществляется обработка [1,2]. Неконтролируемое проникновение атомов (и молекул) среды может ухудшить требуемые состав и свойства обработанного материала. Однако целенаправленное применение газовой среды заданного состава способно привести к дополнительному повышению качества изделия.

Рассмотрим особенности фазоообразования при электроискровом легировании (ЭИЛ). При одновременном насыщении поверхности титана никелем (материал анода или покрытие на титане) с азотом (среда), согласно данным рентгеноструктурного анализа, в зоне взаимодействия возникают фазы в следующем порядке: нитрид никеля;