мации в термоцикле без нагрузки достигает наибольшего значения при $h_1 / h \approx 65\%$. Результаты расчета находятся в хорошем соответствии с экспериментальными данными.

Исследовали влияние величины деформации ε_{oct} , остаточной после разгрузки при низкой температуре, на $\varepsilon_{O\Pi\Phi}$. Результаты расчетов, приведенные на рис. 3, свидетельствуют о том, что при малых величинах остаточной деформации ($\varepsilon_{oct} \le 2\%$) обратимое формоизменение при термоциклировании без нагрузки отсутствует или крайне незначительно. По мере роста остаточной деформации обратимая деформация возрастает, достигая насыщения.

Рис. 2. Зависимость обратимой деформации, накапливаемой при охлаждении без нагрузки, от отношения h_1 / h .

Рис. 3. Зависимость обратимой деформации, накапливаемой при охлаждении без нагрузки, от остаточной после разгрузки деформации.

Работа выполнена при поддержке РФФИ (проекты № 10-08-90003-Бел_а и № 10-01-00671-а).

Список литературы

- 1. R. Prummer, D. Stockel NITINOL stainless steel compound material, made by explosion welding in Fundamental issue and applications of shock-wave and high-strain-rate phenomena K.P. Staudhammer, L. E. Murr, M.A. Meyers eds., Elsevier, 2001.
- S. Belyaev, V. Rubanik, N. Resnina etc. Martensitic transformation and physical properties of "steel – TiNi" bimetal composite, produced by explosion welding // Phase Transition, 2010. V.1, N.4. P. 276 – 283.

ДЕФОРМАЦИОННОЕ УПРОЧНЕНИЕ СПИНОДАЛЬНЫХ ОЦК-МОНОКРИСТАЛЛОВ Fe-Cr-Co-Mo

Кириллов В. А., Чумляков Ю. И.

Открытое акционерное общество «Научно-производственный центр «Полюс», г.Томск, Россия, polus@online.tomsk.net Обособленное структурное подразделение «Сибирский физико-технический институт

имени академика В.Д. Кузнецова Томского государственного университета», г. Томск, Россия, <u>chum@phys.tsu.ru</u>

При механических испытаниях монокристаллических образцов можно создать условия пластического течения и разрушения, не реализуемые в поликристаллах: исключение эффекта границ зерен, активизация одного механизма деформации (механическое двойникование или скольжение) и подавление другого, скольжение и двойникование в заданной системе сдвига и выбранное сочетание систем сдвига, заданная ориентация действующих напряжений относительно плоскостей, по которым происходит разрушение. Ранее авторы исследовали ориентационные зависимости критических скалывающих напряжений, механизмов пластического течения и разрушения, деформационного упрочнения при двойниковании и температур хрупко-вязкого перехода монокристаллов спинодального магнитотвердого сплава Fe–28Cr–10Co–2Mo (ат.%) [1, 2]. Установленные закономерности распространяются не только на данный сплав, но и на широкую группу ОЦК-сплавов на основе системы Fe–Cr, которые тоже претерпевают спинодальное расслоение на две когерентные ОЦК-фазы. Для полноты представлений о пластическом течении монокристаллов этих сплавов необходимо также исследование деформационного упрочнения при скольжении. Его результаты имеют практическое значение для разработки технологии деформационно-стареющих магнитов.

Сплавы получены флюсовой индукционной плавкой чистых шихтовых материалов с последующим электрошлаковым рафинированием. Монокристаллы выращены методом Бриджемена в алундовых тиглях в среде инертного газа. Образцы для испытаний на растяжение были сориентированы так, чтобы сдвиг при скольжении происходил в двойникующем (I) и антидвойникующем (II, III) направлениях (табл. 1). Положение оси растяжения образцов в стандартном стереографическом треугольнике показано на рисунках 1–3. Состояние с максимальной амплитудой расслоения $A = A_{\text{max}}$ достигалось ступенчатым старением, применяемым для обработки сплавов на магнитные свойства: 620°С – 1,5ч; 600°С – 2ч; 580°С – 3ч; 560°С – 6ч; 540°С – 8ч; 520°С – 12ч; 500°С – 24ч. Промежуточные состояния фиксировались исключением нижних ступеней. Амплитуда расслоения контролировалась рентгеноструктурным методом по разности периодов кристаллической решетки спинодальных фаз. Деформация растяжением образцов с размером рабочей части 12×1,5×2,5мм проводилась со скоростью $0.7 \cdot 10^{-3} c^{-1}$.

Ориентация	Система	Фактор	λ_0	A	λ	Относительное сужение ψ	
образца	скольжения	Шмида				расчетное	измеренное
Ι	[-111](1-12)	0,482	52,5	A = 0	45	0,12	0,131
				$0,7A_{\rm max}$	44	0,14	0,158
II	[111](~211)	0,491	40	A = 0	37	0,07	0,076
				$0,7A_{\rm max}$	37,5	0,06	0,063
III	[111](211)	0,446	58.5		_	_	

Таблица 1. Параметры исследуемых монокристаллов

Следы скольжения на поверхности исследуемых кристаллов наблюдаются только пластической деформации, после значительной поэтому невозможно металлографически определить действующие системы скольжения. Рентгеноструктурный анализ показал, что в результате пластической деформации ось образцов I смещается в сторону полюса [111], а образцов II и III — в сторону полюса [111]. Известно, что при однородном одноосном растяжении монокристалла, деформирующегося одиночным скольжением, относительное удлинение є связано с начальным λ₀ и текущим λ углами между направлением сдвига и осью растяжения соотношением [3]

$$1 + \varepsilon = \sin \lambda_0 / \sin \lambda \,. \tag{1}$$

Используя (1), можно экспериментально проверить, действительно ли направление сдвига при скольжении одиночное. Значения λ и λ_0 определяются рентгенографически, а вместо ε подставляется относительное сужение ψ участка образца, в котором определялся угол λ (табл. 1). Рассчитанные по (1) и измеренные значения ψ весьма близки, то есть направление сдвига при скольжении в исследуемых кристаллах преимущественно одиночное. Их кривые течения $\sigma(\varepsilon) = P(\varepsilon)/s_0$ (*P*— деформирующее усилие, s_0 — площадь поперечного сечения недеформированного образца) имеют параболический вид (рисунки 1, 2). Сравнение кривых течения кристаллов ориентации II, показывает, что чем выше деформирующие напряжения, тем с меньшим упрочнением происходит пластическое течение (рис. 1).

Рис. 1. Кривые течения при растяжении монокристаллов Fe–10Co–28Cr–2Mo (ат.%) ориентаций II (сплошные линии) и III (пунктир)

У кристаллов ориентации I деформационное упрочнение тоже снижается с ростом деформирующих напряжений, пока они не превысят критического значения для начала механического двойникования (рис. 2). Для анализа этого упрочнения нужны истинные значения коэффициента деформационного упрочнения $\theta = d\tau/d\gamma$. Скалывающее напряжение τ с учетом (1) определяется по формуле

$$\tau = \sigma \cos \varphi_0 \cos \lambda =$$

= $\sigma \cos \varphi_0 \left[1 - \sin^2 \lambda_0 / (1 + \varepsilon)^2 \right]^{\frac{1}{2}}$, (2)

где φ_0 — угол между нормалью плоскости сдвига и осью растяжения в начале деформации. Относительный сдвиг γ [3]

$$\gamma = \{ [(1 + ε)^2 - sin^2 λ_0]^{\frac{1}{2}} - cos λ_0 \} / cos φ_0. \quad (3)$$

 Из (2) и (3) следует, что

 $d\tau/d\gamma = \{ [1 - sin^2 λ_0 / (1 + ε)^2] d\sigma/dε + + σ sin^2 λ_0 / (1 + ε)^3 \} cos^2 φ_0$

Максимальные значения коэффициента θ, рассчитанные по начальным участкам кривых течения образцов разных ориентаций и амплитуды расслоения при различных температурах, приведены в таблице 2.

Рис. 2. Кривые течения при растяжении монокристаллов Fe–10Co–28Cr–2Mo (ат.%) ориентации I. Кристаллы 0,65 A_{max} с предела текучести деформируются двойникованием (зубчатый участок)

Рис. 3. Зависимость отношения *G*/θ от критических скалывающих напряжений в монокристаллах Fe–28Cr–10Co–2Mo (ат.%)

Таблица 2. Коэффициент θ
монокристаллов Fe-28Cr -
10Со –2Мо(ат.%)

Т, К	$A/A_{\rm max}$	$\tau_{\kappa p}$	θ, МПа					
Ориентация І								
	0	224	916					
172	0,4	270	655					
4/3	0,5	287	654					
	0,75	382	485					
572	0,55	309	604					
5/5	0,65	344	496					
Ориентация II								
143	0	403	461					
293	0,75	494	318					
	0,85	556	280					
	0	230	803					
	0,4	274	630					
172	0,55	333	481					
4/3	0,85	508	355					
	0,9	525	310					
	1,0	569	280					
Ориентация III								
	0,5	297	488					
573	0,55	329	508					
	0.6	344	510					

Наблюдаемое снижение θ с ростом $\tau_{\kappa p}$ свидетельствует о низкой эффективности дислокационных барьеров в условиях действия высоких деформирующих напряжений.

Выполняется общая закономерность: кристаллы различных ориентаций при разных температурах, но при равных действующих скалывающих напряжениях, имеют одинаковые значения θ . Анализ данных таблицы 2 показывает гиперболическую зависимость $\theta(\tau_{\kappa p})$. В координатах $\tau_{\kappa p}$ – G/θ все экспериментальные значения укладываются на прямую линию (рисунок 3), т. е. выполняется универсальная зависимость

$d\tau/d\gamma = B/\tau$.

Коэффициент пропорциональности *В* не зависит от ориентации и структурного состояния кристалла и температуры.

Список литературы

- 1. Двойникование и скольжение в монокристаллах Fe-Cr-Co-Mo / В.А. Кириллов, Ю.И. Чумляков, А.Д. Коротаев, В.Х. Даммер // Физика металлов и металловедение. 1989. Т. 67, № 5. С. 1018–1025.
- 2. Ориентационная зависимость механизма разрушения спинодальных ОЦК-монокристаллов Fe-Co-Cr-Mo / В.А. Кириллов, Ю.И. Чумляков, А.Д. Коротаев, В.Х. Даммер // Изв. вузов. Физика. 2009, № 9/2. С. 41-47.
- 3. Хоникомб Р. Пластическая деформация металлов / Пер. с англ. под ред. Б.Я.Леонова. М.: Мир, 1972.