

Рис. 4. Распределения углов разориентировки фасеток в изломах: *a*) – образца, разрушенного при –196 °C, *б*) – образца, насыщенного водородом

Выводы

1. С помощью метода КЛСМ можно по 3D изображениям изломов с высокой точностью определять характеристики рельефа: размеры и углы разориентировки фасеток.

2. Предложена схема формирования рельефа фасеток сколоподобного разрушения, в основе которой лежит предположение о том, что разрушение осуществляется за счет образования трещин вдоль полос скольжения, вследствие локализации деформации в них под действием водорода.

Работа выполнена при поддержке гранта РФФИ 14-02-31052 и ФЦП, Соглашение RFMEFI57714X0145

Список литературы

1. Hovis D.B., Heuer A.H. The use of laser scanning confocal microscopy (LSCM) in materials science. // J. Microsc. 2010. Vol. 240, № 3. P. 173–180.

2. Tata B.V.R., Raj B. Confocal laser scanning microscopy: Applications in material science and technology // Bull. Mater. Sci. Springer India, 1998. Vol. 21, № 4. P. 263–278.

СТРУКТУРА ТЕПЛОВОЙ ЭНЕРГИИ В АНГАРМОНИЧЕСКИХ ТВЕРДЫХ ТЕЛАХ

Слуцкер А.И., Бетехтин В.И., Кадомцев А.Г., Гиляров В.Л.

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия, Alexander.Slutsker@mail.ioffe.ru

Основной формой внутренней атомной динамики в твердых телах является колебательная динамика. Присущие атомам волновые свойства вызывают квантование этой динамики: дискретность уровней колебательной энергии с запрещением состояния покоя (неподвижности) атомов. Наинизший разрешенный уровень энергии носит название уровня нулевой энергии (или – нулевого уровня). Тепловое состояние характеризуется заселенностью уровней энергии, лежащих выше нулевого уровня. Тепловой энергией твердого тела и называют суммарную энергию всех заселенных уровней атомов, лежащих выше нулевого. По природе же колебания на нулевом и на тепловых уровнях единообразны [1, 2], но имеется отличие: энергию атома с теплового уровня можно «снять» и перевести тем самым возбуждение атома либо не более низкий тепловой уровень, либо - на нулевой, а «отнять» у атома в твердом теле нулевую колебательную энергию нельзя (запрещает квантовое «соотношение неопределенностей»).

В модели представления твердого тела ансамблем квантовых гармонических осцилляторов (модель Эйнштейна) структура тепловой энергии атомов выглядит следующим образом [2]:

- значение колебательной энергии нулевого уровня на одну степень свободы, отсчитываемой от дна потенциальной ямы, составляет половину кванта энергии осциллятора $E_0 = \frac{1}{2}\Delta E = \frac{1}{2}hv$, где h – постоянная Планка, v- частота колебаний атома – осциллятора.

- тепловые уровни расположены эквидистантно, так что энергия на «*n*»-м тепловом уровне имеет вид:

$$E_n = E_0 + n \cdot \Delta E = \frac{1}{2}h\nu + n \cdot h\nu$$

где n = 1, 2, 3... - номер теплового уровня

- частота колебаний атома на всех уровнях является одинаковой.

Как известно, в реальных твердых телах упругость межатомных связей является нелинейной, вследствие чего колебания атомов оказываются ангармоническими [3].

В результате ангармоничности колебаний структура тепловой энергии ангармонического осциллятора приобретает отличия от структуры энергии гармонического осциллятора [3]:

- уровни тепловой энергии расположены не эквидистантно: с увеличением энергии расстояние между соседними уровнями уменьшается;

- частота колебаний изменяется от уровня к уровню: с увеличением энергии уровня частота колебаний снижается;

- существенно изменяется вид тепловой энергии, что и является предметом данного рассмотрения.

При рассмотрении распределения энергии в ансамбле квантовых ангармонических осцилляторов используем упрощающие приближения:

Для реальных твердых тел с их характерной величиной кванта колебательной энергии $\Delta E \cong 0.1 eV$ и при невысоких температурах $T \leq 300$ К более 90 % тепловой энергии ансамбля (твердого тела) принадлежит заселенности первого теплового уровня - вследствие экспоненциальной зависимости заселенности от отношения энергии уровня к температуре (E_n/kT). Поэтому структура энергии первого теплового уровня достаточно хорошо отражает структуру тепловой энергии всего ансамбля.

Нелинейную упругость (зависимость силы упругости *F* от растяжения межатомной связи) приближенно описываем квадратичным двучленом:

$$F = f\delta_T - g\delta_T^2 \qquad [4],$$

где: $\delta_{\rm T}$ – деформация межатомной связи, вызванная тепловым возбуждением атома, f – коэффициент линейной упругости, g – коэффициент ангармоничности первого порядка.

В отличие от гармонического осциллятора с частотой v, у которого тепловая энергия на первом уровне (n = 1) составляет $E_T^h = hv$, тепловая энергия на первом уровне ангармонического осциллятора имеет вид [1, 3]:

$$E_T^{anh} \cong h\nu_1 + \frac{1}{2}\frac{g^2}{f^3}h^2\nu_1^2$$
,

где v₁ – частота колебаний на первом тепловом уровне. Видно изменение структуры тепловой энергии: появился член, обусловленный ангармонизмом, о чем свидетельствует наличие коэффициента (g) сомножителем в этом члене. Отметим физический смысл этого члена. При ангармонических колебаниях приближенно имеем [4]:

среднее расширение связи («тепловое расширение») $\langle \delta_T \rangle \cong \frac{g}{\epsilon} \langle \delta_T^2 \rangle$

средняя растягивающая «ангармоническая сила» $\langle F_{anh} \rangle \cong g \langle \delta_T^2 \rangle$

Тогда средняя потенциальная энергия «теплового расширения» связи:

$$W_T = \frac{1}{2} \langle F_{anh} \rangle \cdot \langle \delta_T \rangle \cong \frac{1}{2} \frac{g^2}{f} \langle \delta_T^2 \rangle^2$$

Для осциллятора приближенно тепловая энергия имеет вид: $E_{T} \cong f \langle \delta_T^2 \rangle$

В итоге получаем: $W_{T \cong} \frac{1}{2} \frac{g^2}{f^3} E_T^2$

Таким образом, тепловая энергия ангармонического твердого тела включает две составляющие:

- гармоническую – связанную с частотой осциллятора так же, как у гармонического осциллятора;

- квазистатическую (потенциальную).

В реальных твердых телах гармоническая составляющая занимает до 99 % и более величины всей тепловой энергии тела. Изменение температуры вызывает близкое к пропорциональному изменению частоты колебаний (ангармонический эффект) [5], что приводит к пропорциональному изменению гармонической составляющей тепловой энергии, которое составляет доминирующую долю изменения тепловой энергии.

Работа выполнена при поддержке Программы фундаментальных исследований Президиума РАН «Современные проблемы физики низких температур».

Список литературы

- 1. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Ч.1. М. –Л.: ОГИЗ, 1948, 568 с.
- 2. Киттель Ч. Введение в физику твердого тела. М. Наука. 1982. 289 с.
- 3. Волькенштейн М.В., Ельяшевич М.А., Степанов Б.И. Колебания молекул. ГИТТЛ. М. Л. 1949. Т.1. 602 с.
- 4. Френкель Я.И. Кинетическая теория жидкостей. М. Изд-во АН СССР. 1975.460 с.
- Веттегрень В.И., Слуцкер А.И., Гиляров В.Л., Кулик В.Б., Титенков П.С. ФТТ. Т.45, вып.8, С. 1528 (2003).

ОСОБЕННОСТИ ОБРАЗОВАНИЯ МАРТЕНСИТА ДЕФОРМАЦИИ В ФОЛЬГЕ СВЕРХУПРУГОГО СПЛАВА Ті–22%Nb–6%%Zr ПРИ ИЗГИБЕ

Перлович Ю.А., Исаенкова М.Г., Чеканов С.В., Фесенко В.А., Крымская О.А.

Национальный исследовательский ядерный университет «МИФИ», Москва, Россия, yuperl@mail.ru

Деформация сверхупругого сплава Ti-22%Nb-6%%Zr (ат. %) реализуется посредством действия двух основных механизмов, следующих друг за другом по мере повышения прикладываемого напряжения σ , а вместе с ним и степени деформации ε . Эти механизмы таковы: взаимное смещение атомов в кристаллической решетке сплава и обратимое образование мартенсита деформации (МД) $\beta \leftrightarrow \alpha$ ", где β – аустенитная фаза с кристаллической решеткой ОЦК, а α " – мартенситная фаза с орторомбической решеткой [1]. Обратимость образования МД при комнатной температуре при малости напряжения σ и обуславливает, по-видимому, эффект сверхупругости.

По поводу образования МД и его действительной обратимости возникает ряд вопросов, ответить на которые можно только на основе рентгеновского текстурного анализа, который позволяет с высокой точностью судить об изменении распределения зерен по ориентациям в результате деформации образцов [2]. Текстурные исследования образцов