РАЗРАБОТКА МЕТОДА ИНДУКЦИОННОЙ НАПЛАВКИ АНТИФРИКЦИОННЫХ ПОКРЫТИЙ ПОВЫШЕННОЙ ИЗНОСОСТОЙКОСТИ С ИСПОЛЬЗОВАНИЕМ НАНОРАЗМЕРНЫХ КОМПОНЕНТОВ

Белоцерковский М.А., Курилёнок А.А., Сосновский И.А.

Государственное научное учреждение «Объединенный институт машиностроения НАН Беларуси», Минск, Беларусь, <u>AKTO13@mail.ru</u>

Как показывает анализ источников [1–3] эффект упрочнения за счет увеличения центров кристаллизации и формирования стопоров дислокаций достигается при содержании нановключений оксидов, нитридов или карбидов, если их совокупная масса не превышает 0,5–1,5% от общей массы покрытий. Непосредственное введение в порошок и перемешивание таких наночастиц может не обеспечить их равномерное распределения в шихте изза эффекта механолегирования [4]. Учитывая относительно малую длительность процесса индукционной наплавки, это, в свою очередь, может также привести к неравномерному распределению нановключений в материале антифрикционного покрытия. Повышенное (свыше 1,5 %) содержание нановключений в отдельных областях материала антифрикционных покрытий способствует формированию дефектной структуры, которая способствует, с одной стороны, появлению и скоплению дислокаций, а с другой, при циклически меняющихся повышенных механических нагрузках, – трещинообразованию. Таким образом, повышенное содержание нановключений в отдельных областях материала антифрикционного покрытия способствует его разупрочнению.

Снизить эффект механолегирования можно за счет введения в состав шихты раствора или суспензии, содержащей в полярном растворителе или полярной жидкости промежуточный продукт. При этом такой промежуточный продукт должен обеспечивать в результате химических превращений, в том числе в результате взаимодействия с окружающей средой (компонентами шихты, растворителя или жидкости, а также атмосферы) при температурах не выше температур наплавки, получение твердых, тугоплавких наночастиц. Наличие полярного растворителя в составе раствора или полярной жидкости в суспензии промежуточного продукта будет способствовать его относительно равномерному распределению в шихте при механическом смешивании. Всем этим требованиям удовлетворяет гидроксид алюминия γ -Al(OH)₃ который при температурах ниже температуры наплавки разлагается до наноразмерного тугоплавкого оксида алюминия, а также обладает невысокой стоимостью и легкодоступностью.

Предлагаемый способ нанесения антифрикционного покрытия включает предварительный нагрева детали до температуры 500 °C с изотермической выдержкой τ , при этой температуре протекает термическое разложение гидроксида алюминия γ -Al(OH)₃ в наноразмерный (рентгеноаморфный) оксид алюминия Al₂O₃ согласно следующей реакции: $2[Al(OH)_3] \rightarrow Al_2O_3 + 3H_2O$.

При нагреве до температуры ниже $300\,^{\circ}$ С, из-за существования двух направлений фазовых превращений, в ходе термического разложения на воздухе не образуется рентгеноаморфный оксид алюминия Al_2O_3 . При температуре выше $500\,^{\circ}$ С уже не происходит процесс разложения, а начинается кристаллизация рентгеноаморфного оксида алюминия с образованием мелкокристаллической структуры.

Для определения времени необходимого на протекание реакции, была рассмотрена реакция разложения гидроксида алюминия. По закону Гесса был выполнен расчет суммарного тепловой эффекта, а также получена зависимость времени как функции зависящей от массы добавок вводимых в шихту, частоты тока установки ТВЧ, мощности нагре-

вательного элемента установки ТВЧ и диаметра стальной втулки: $\tau = f(m, f, P, D)$. После использования несложных математических преобразований, получили уравнение:

$$\tau = \frac{21,244 \cdot m_c}{\eta_{\Pi} \cdot P_{\Gamma}} \cdot \left(1 - \sqrt{\frac{7,92}{f \cdot D_2^2 \cdot 10^3}} \right),\tag{1}$$

где τ — время выдержки, с; m_c — масса гидроксида алюминия, г; η_{π} — КПД преобразователя частоты установки ТВЧ; P_{Γ} — мощность нагревательного элемента установки ТВЧ, кВт; f — частота тока установки ТВЧ, Γ ц; D_2 — наружный диаметр детали, м.

Уравнение (1) было получено после преобразования и подстановки постоянных величин и коэффициентов в уравнение (2), которое имеет вид:

$$\tau = k \cdot m_c \frac{\left(\Delta H_{xp} / M_c + 0.35 \cdot L \cdot 10^{-3} + \Delta T \cdot c \cdot 10^{-6}\right) \cdot \left(D_2 - \sqrt{\frac{2\rho}{2\pi \cdot f \cdot \mu_0 \cdot \mu}}\right)}{\eta_{\tau p} \cdot \eta_{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle \Pi} \cdot P_{\scriptscriptstyle \Gamma} \cdot D_2}, \tag{2}$$

где т — время выдержки, с; k — коэффициент учитывающий потери, k =1,3–1,5; m_c — масса гидроксида алюминия, г; $\Delta H_{\rm xp}$ — суммарный тепловой эффект химической реакции, $\Delta H_{\rm xp}$ = 641,3 кДж/моль; $M_{\rm c}$ — молярная масса гидроксида алюминия, $M_{\rm c}$ = 78 г/моль; L — удельная теплота парообразования воды, L = 2256 кДж/кг; ΔT — изменение температуры, К; c — теплоемкость гидроксида алюминия, c = 87,248 Дж/кг·К; D_2 — наружный диаметр детали, м; ρ — удельное электрическое сопротивление материала стальной втулки, ρ =0,5·10⁻⁶ Ом·м; f — частота тока установки ТВЧ, Гц; μ_0 — магнитная проницаемость вакуума, μ_0 =4 π ·10⁻⁷ Гн/м; μ — относительная магнитная проницаемость, показывающая, во сколько раз проницаемость материала стальной втулки больше проницаемости вакуума, μ =16; $\eta_{\rm тp}$ — КПД трансформатора, $\eta_{\rm тp}$ =0,85; $\eta_{\rm u}$ — КПД индуктора, $\eta_{\rm u}$ =0,75; $\eta_{\rm n}$ — КПД преобразователя частоты установки ТВЧ; $P_{\rm r}$ — мощность нагревательного элемента установки ТВЧ, кВт.

Для определения нужного количества гидроксида алюминия γ -Al(OH)₃ в составе шихты, были проведены исследования свойств покрытий с различным количеством добавок. В качестве основного материала шихты использовались порошки бронзы БрОФ 10-0,3 (ГОСТ 613) со сферической формой частиц средней дисперсности (63–125 мкм). Для введения в состав шихты гидроксида алюминия, ее смачивали водной суспензией содержащей тонкодисперсный гидроксид алюминия γ -Al(OH)₃. Затем осуществляли процесс центробежной индукционной наплавки антифрикционного покрытия, нагрев заготовки до температуры наплавки осуществлялся в две стадии.

На первой стадии производился нагрев заготовки до температуры 500 °C с последующей изотермической выдержка при этой температуре. В результате чего обеспечивались необходимые условия для протекания реакции термического разложения гидроксида алюминия $Al(OH)_3$ в наноразмерный оксид алюминия Al_2O_3 согласно химической реакции: $2Al(OH)_3(me.) \rightarrow Al_2O_3(me.) + 3H_2O(\epsilon.) \uparrow$. Продолжительность выдержки была определена из выражения (1).

На второй стадии осуществлялся нагрев втулки токами высокой частоты до температуры обеспечивающей наплавку шихты, для порошка оловянистой бронзы БрОФ 10-0.3 эта температура составляет 1100 °C, и изотермическую выдержку при этой температуре.

Для наплавленных покрытий определялась микротвердость и осуществлялась оценка их триботехнических характеристик. Относительная по массе величина добавки гидроксида алюминия в порошковую шихту варьировалась в пределах от 1 до 4%. Верхняя граница этого предела установлена на основании анализа работ [5-8], из которых следовало, что повышенное (свыше 5%) содержание наноразмерных модификаторов в расплавах может не способствовать улучшению триботехнических свойств антифрикционных покрытий. Результаты приведены в таблице 1.

Таблица 1. Механические и триботехнические свойства покрытий

Показатели	Относительное содержание γ-Al(OH) ₃ в шихте, %			
	0	1	2	4
Твердость, НВ	85	88	91	95
Микротвердость, МПа	820	845	870	910
Коэффициент трения	0,21	0,2	0,17	0,15
Износ, мгм/км	6,3	5,9	5,5	5,0

Таким образом, содержание в шихте гидроксида алюминия γ -Al(OH)₃ менее 2% не дало существенного изменения механических и триботехнических свойств покрытия, а содержание в шихте гидроксида алюминия γ -Al(OH)₃ равное 4% увеличило показатели твердости и микротвердости на 11%, уменьшило износ на 20% и коэффициет трения на 28%.

Время изотермической выдержки ограничивается временем необходимым для завершения реакции термического разложения гидроксида алюминия и удаления конституционной воды. При увеличении времени выдержки увеличивается время термического воздействия на материал покрытия, что влечет дополнительные затраты средств. При уменьшении времени выдержки реакция разложения не сможет пройти до конца, в результате чего получится дефектная структура покрытия.

Список литературы

- 1. Чалмерс, Б. Теория затвердевания [Текст] / Б. Чалмерс. М.: Металлургия, 1968. 288 с.
- 2. Новиков, И.И. Дефекты кристаллического строения металлов [Текст] / И.И. Новиков. М.: Металлургия, 1975. 208 с.
- 3. Черепанов, А.Н. Применение ультрадисперсных порошков для улучшения свойств металлов и сплавов [Текст] / А.Н. Черепанов [и др.] // Материаловедение № 10 2000. С. 45-53.
- 4. Калинина, А.П. Структурообразование при охлаждении жидких металлов, содержащих ультрадиснерсные частицы [Текст] / А.П. Калинина. Новосибирск: НГУ, 1999. 105 с.
- 5. Пенкин, Н.С. Основы трибологии и триботехники [Текст] / Н.С. Пенкин, А.Н. Пенкин, В.М. Сербин. М.: Машиностроение, 2008. 206 с.
- 6. Мышкин, Н.К. Трение, смазка, износ. Физические основы и технические приложения трибологии [Текст] / Н.К. Мышкин, М.И.Петроковец. М.: Физматлит, 2007. 386 с.
- 7. Гриб, В.В. Лабораторные испытания материалов на трение и износ [Текст] / В.В. Гриб, Г.Е. Лазарев. М: Наука, 1968. 141 с.
- 8. Федорченко, И.М. Спеченные композиционные материалы [Текст] / И.М. Федорченко, Л.И. Пугина. Киев: Наук, думка, 1980. 404 с.