РЕНТГЕНОСТРУКТУРНЫЕ ИССЛЕДОВАНИЯ БОРИДОВ ТИТАНА, СИНТЕЗИРОВАННЫХ МЕТОДОМ СВС ПРИ ВОЗДЕЙСТВИИ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ

Клубович В. В., Кулак М. М., Платонов Л. Л., Мосунов Е. И.*

Институт технической акустики НАН Беларуси, Витебск, <u>ita@tut.bv</u> *Объединенный Институт Машиностроения НАН Беларуси, Минск, <u>emosunov(@rambler.ru</u>

Введение

Работы по исследованию механизмов структурообразования самораспространяющегося высокотемпературного синтеза (CBC) систем с многофазным конечным продуктом, по созданию научных принципов управления процессом CBC и свойствами продуктов синтеза с наложением интенсивных ультразвуковых колебаний (УЗК) представляют большой научный и практический интерес. Результаты их исследования являются научной основой для успешного регулирования процессов создания материалов с заданными свойствами методом CBC в ультразвуковом поле, представляют несомненный интерес для развития новых технологических приемов для уточнения – расширения представлений о механизме процессов, происходящих в волне синтеза под действием УЗК.

В работе приведены данные рентгеновских измерений фазового состава и параметров кристаллических решеток синтезированных фаз системы титан-бор после самораспространяющегося высокотемпературного синтеза при наложении ультразвуковых колебаний.

Методика исследований

Полученные методом СВС с наложением УЗК образцы исследовали методом рентгенографического анализа. При исследовании неразмолотых образцов (образец, подготовленный к металлографическим исследованиям) было замечено, что имеется текстура, образующаяся в процессе синтеза. Поэтому для рентгенографических измерений приготавливали образцы в виде порошков путем размола [1].

Рентгеноструктурный анализ конечных продуктов синтеза титан-бор проводили на дифрактометрическом комплексе D8 ADVANCE фирмы "BRUKER" Германия в Сик_а излучении в автоматическом режиме съемки. Напряжение на рентгеновской трубке составляло 50 кВт, ток 20 мА. Съемки проведены в сканирующем режиме: интервал сканирования 26 составлял 20–120 градусов, шаг сканирования – 0,1 градуса, выдержка на точке сканирования – 1,8 секунды, образец вращался со скоростью 15 оборотов в минуту. В качестве монохроматора использовали пиролитический графит. Регистрацию рентгеновского излучения осуществляли сцинтилляционным счетчиком. Предварительно исследуемая смесь порошка была насыпана в углубление кюветы, разглажена шпателем до уровня кюветы и закреплена на предметном столике гониометра.

Фазовый анализ дифрактограмм выполнен в программном обеспечении "EVA" в объеме картотеки PDF-2 (Powder Diffraction File) International Centre for Diffraction Data. В табл. 1 приведены результаты исследования фазового анализа продуктов горения системы Ti + βB для различных значений величины β (стехиометрический коэффициент).

Таблица 1	Фазовый состав	продуктов го	рения системы	Ti+βB
-----------	----------------	--------------	---------------	-------

340

β = 0,75	$\beta = 1,0$	$\beta = 1,5$	β = 2,0	β = 2,25
Ti+ TiB+ TiB ₂	Ti+ TiB+ TiB ₂ + Ti ₃ B ₄	Ti+ TiB+ TiB ₂	TiB ₂	TiB ₂

Из анализа данных табл. 1 видно, что в исследованных пределах изменения соотношения исходных компонентов в шихте в процессе горения синтезируются все фазы, достоверно известные по диаграмме состояний [2].

Рентгеноструктурный анализ дифрактограмм выполнен в программном обеспечении "EVA" и "TOPAS" дифрактометрического комплекса дифрактометра D8 ADVANCE.

Определение параметров кристаллической решетки, размеров кристаллитов выполнено в программном обеспечении "TOPAS".

Алгоритм программы "TOPAS" предусматривает введение начальных параметров, которые описывают:

конфигурацию условий съемки на дифрактометре – размер первичной и вторичной щели, радиус гониометра, угол расходимости щелей Соллера, материал монохроматора и угол установки, длину волны рентгеновского излучения, отражательную площадь образца;

 начальные параметры структурного состояния анализируемого вещества – пространственную группу вещества, приблизительные параметры решетки.

Используя начальные условия программное обеспечение "TOPAS" выполняет уточнение (расчет) параметров кристаллической решетки выбранной фазы с учетом инструментальных функций, вызывающих искажения профиля дифракционных пиков. Одновременно выполняется определение индексов интерференции всех дифракционных максимумов на рентгенограмме выбранной фазы и размер кристаллитов этой фазы в крупинках порошка.

Из полученных данных рассчитывали объем элементарной ячейки (ОЭЯ). Так как кристаллическая решетка фазы Ti и TiB₂ имеет гексагональную сингонию, а фазы TiB и Ti₃B₄ – орторомбическую, то объем элементарной ячейки для этих фаз рассчитывали по формулам:

для фаз Ті ТіВ2:

$$V = a^2 * c * \sin 120^\circ$$
,

для фаз ТіВ и ТізВ4:

$$V = a \cdot b \cdot c$$
,

где a, b, c - параметры кристаллической решетки.

В таблицах 2, 3, 4, 5 приведены параметры и объемы кристаллических решеток синтезированных фаз системы титан-бор в зависимости от амплитуды ультразвуковых колебаний.

Анализ таблиц № 2, 3, 4, 5 показывает, что наложение ультразвуковых колебаний во время синтеза приводит к изменению параметров и объема кристаллических решеток синтезированных фаз.

Ti				TiB				TiB ₂		
Ę, мкм	<i>a</i> , Å	<i>c</i> , Å	V, Å ³	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	V, Å ³	<i>a</i> , Å	<i>c</i> , Å	V, Å ³
0	2,9780	4,5310	34,7985	6,1159	3,0518	4,5595	85,1031	3,0202	3,2468	25,6474
5	2,9811	4,5263	34,8362	6,1227	3,0551	4,5643	85,3796	3,0224	3,2515	25,7223
10	2,9799	4,5230	34,7830	6,1174	3,0533	4,5611	85,1951	3,0213	3,2511	25,7001
$a_3 = 2,9505 \text{ Å}, c_3 = 4,6826 \text{ Å},$ $V_3 = 35,30 \text{ Å}^3$			$a_3 = 6,12$ Å, $b_3 = 3,06$ Å, $c_3 = 4,56$ Å $V_2 = 85,40$ Å ³				$a_{3} = 3,0280 \text{ Å}, c_{3} = 3,2280 \text{ Å}, V_{3} = 25,63 \text{ Å}^{3}$			

Таблица 2. Зависимость параметров и объема кристаллических решеток синтезированных фаз Ті, ТіВ, ТіВ, от амплитуды УЗК для состава Ті +0,75В

Таблица 3. Зависимость параметров и объема кристаллических решеток синтезированных фаз Ti, TiB от амплитуды УЗК для состава Ti + B

		Ti		TiB				
ξ, мкм	a, Å	<i>c</i> , Å	V, Å ³	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	V, Å ³	
0	2,9472	4,779	35,9479	6,1175	3,0532	4,5614	85,1993	
5	2,9385	4,6878	35,0545	6,1105	3,0449	4,5715	85,0566	
10	2,9951	4,6895	36,4321	6,1167	3,0501	4,5703	85,2685	
$a_3 = 2,9505 \text{ Å}, c_3 = 4,6826 \text{ Å}, V_3 = 35,30 \text{ Å}^3$				$a_3 = 6,12$ Å, $b_3 = 3,06$ Å, $c_3 = 4,56$ Å, $V_3 = 85,40$ Å ³				

Таблица 4. Зависимость параметров и объема кристаллических решеток синтезированных фаз TiB₂₀ Ti 3B₄ от амплитуды УЗК для состава Ti + B

		ΓiB ₂		Ti ₃ B ₄				
ζ, мкм	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , ų	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³	
0	3,0304	3,2315	25,7006	3,2642	13,7299	3,0404	136,2676	
5	3,0309	3,2335	25,7240	3,2663	13,7405	3,0393	136,4078	
10	3,0316	3,2341	25,7415	3,2675	137445	3,0395	136,5100	
$a_3 = 3,0280$ Å, $c_3 = 3,2280$ Å, $V_3 = 25,63$ Å ³				$a_9 = 3$,0280 Å, $c_3 = 3$	3,2280 Å, V₃=	=25,63 Å ³	

Таблица 5. Зависимость параметров и объема кристаллических решеток синтезированных
фаз Ті, ТіВ, ТіВ2 от амплитуды УЗК для состава Ті + 1,5В

Ti				TiB				TiB ₂		
Ę. МКМ	<i>a</i> , Å	<i>c</i> , Å	V, Å ³	<i>a</i> , Å	b, Å	c, Å	V, Å ³	<i>a</i> , Å	<i>c</i> , Å	V, Å ³
0	2,9950	4,6918	36,4480	6,0812	3,0504	4,5802	84,9631	3,0329	3,2352	25,7633
5	2,9353	4,6916	35,0061	6,1289	3,0445	4,5904	85,6542	3,0322	3,23416	25,7510
10	2,9365	4,7060	35,1422	6,1196	3,0490	4,5766	85,3932	3,0325	3,2352	25,7662
$a_3 = 2,9505 \text{ Å}, c_3 = 4,6826 \text{ Å},$ $V_3 = 35,30 \text{ Å}^3$			$a_3 = 6,12$ Å, $b_3 = 3,06$ Å, $c_3 = 4,56$ Å $V_3 = 85,40$ Å ³				$a_3 = 3,0280 \text{ Å}, c_3 = 3,2280 \text{ Å},$ $V_3 = 25,63 \text{ Å}^3$			

Заключение

342

Экспериментальные исследования процесса СВС системы с многофазным конечным продуктом титан-бор показали, что воздействие ультразвуковых колебаний приводит изменению кристаллической структуры конечных продуктов синтеза. Приведенные результаты позволяют сделать предположение, что наложение ультразвука на образцы в процессе их синтеза приводит к изменению условий синтеза. Из анализа таблиц № 2, 3, 4, 5 видно, что увеличение амплитуды ультразвуковых колебаний приводит изменению как объема кристаллической решетки синтезированных фаз, так параметров кристаллической решетки синтезированных фаз.

Список литературы

- 1. Липсон, Л., Стипл, Г. Интерпретация порошковых рентгенограмм.- М.: Мир, 1972.- 384 с.
- 2. Самсонов, Г.В., Серебрякова, Т.И., Неронов, В.А. Бориды. М.: Атомиздат, 1975.- 376 с.
- Аницик, В.М., Гуманский, Г.А. Структурный анализ: (Элементы теории, задачи, лаб. работы). Мн.: Изд-во БГУ, 1979.- 136 с.

УДК 669.24.245

ОСАЖДЕНИЕ ТІЛІ ПЛЁНОК ИОННО-ЛУЧЕВЫМ РАСПЫЛЕНИЕМ

Рубаник В. В., Маркова Л. В.*, Андреев М. А.*, Рубаник В. В.** (мл.), Заболотина Ю. А.

ГНУ «Институт технической акустики НАН Беларуси», Витебск, Беларусь ita@vitebsk.by

> * ГНПО порошковой металлургии, Минск, Беларусь, ** Учреждение образования «ВГТУ», Витебск, Беларусь

В последнее время в тонкопленочной технологии большое внимание уделяется разработке новых и усовершенствованию традиционных методов получения пленок различных соединений, в том числе и TiNi, что объясняется широким применением их в микроэлектронике, медицине и технике [1]. В частности, в работе [2] показано, что методом ионно-плазменного осаждения удается получать TiNi пленки, которые после термообработки обладают термомеханическими свойствами, соответствующими исходному материалу.

В данной работе TiNi пленку получали методом ионно-лучевого распыления композиционной мишени, представляющей собой диск Ø 80 мм и толщиной 6 мм. В качестве подложек для формирования композиционных покрытий были выбраны полированные пластины из стали 45, кристаллы КН2РО4 и пластины кремния. Покрытие наносили в течение двух часов на предварительно обработанные ионным пучком и подогретые до 200 ° С подложки. Предварительную обработку подложек проводили в течение 10 минут. Толщина покрытия, сформированного при таких условиях, составила порядка 1 мкм.

Определение состава сформированных покрытий проводили на аттестованном сканирующем электронном микроскопе «Нанолаб-7» фирмы «Оптон» (Германия) с микрорентгеноспектральным анализатором AN 10000 фирмы «Линк Аналитикл» (Ве-