ИССЛЕДОВАНИЕ ПРОЧНОСТИ КРИСТАЛЛОВ СЛОЖНЫХ ОКСИДОВ

Бузанов О. А., Кугаенко О. М., Овчаренко Т. Н.

Московский Государственный Институт Стали и Сплавов (Технологический университет), Москва, crystalxxi@misis.ru

Благодаря редкому сочетанию пьезоэлектрических и электрофизических свойств, кристаллы сложных оксидов группы лантан-галлиевых силикатов (ЛГС), имеющих кристаллическую структуру кальций-галлогерманата ($Ca_3Ga_2Ge_4O_{14}$) (рис. 1), привлекают к себе большое внимание как перспективные пьезоэлектрические материалы в связи с отсутствием фазовых переходов вплоть до температуры плавления, отсутствием пироэлектрического эффекта, высоким значением пьезомодулей и низкой деградацией поверхности материала при контакте с электродами.

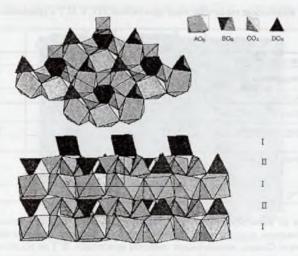


Рис. 1. Структурная модель кальций—галлогерманата ($A_3BC_3D_2O_{14}$). Сверху проекция [00.1], снизу проекция [11.0], для наглядности в верхнем слое кубы Томсона опущены.

В течение многих лет частота электромагнитного сигнала в диапазоне от 10 kHz до 300 MHz стабилизируется с помощью пьезоэлектрических резонансных элементов из кристаллического кварца с кратковременной стабильностью частоты до $1\cdot10^{-9} \text{ c}^{-1}$, что определяется малым внутренним трением (высокой акустической добротностью) кварца [4]. Более высокой стабильностью обладают только квантовые стандарты частоты, используемые в стационарных условиях. Идеальный пьезоэлектрический монокристалл как основа устройств стабилизации и селекции частот радиодиапазона должен обладать, как минимум, тремя основными свойствами:

- коэффициент электромеханической связи (КЭМС) для объемных акустических волн должен быть более 10 %;
- кристалл должен иметь кристаллографические ориентации (срезы) с нулевым уровнем упругих колебаний в области комнатной температуры;
- потери при распространении упругих колебаний в кристалле должны быть менее $1 \, \mathrm{dB/\mu s} \, \mathrm{GHz}^2$. Желательно, чтобы у кристалла отсутствовали дополнительные физические эффекты, осложняющие получение и ухудшающие параметры устройств. Например, сильный пироэффект и сегнетоэлектрическая природа танталата лития приводят к частому разрушению образцов на стадии обработки и при увеличении мощности электрического управляющего сигнала, а также к низкой долговременной стабильности параметров (старению).

Кристаллический кварц с 1935 г. по настоящее время остается основой пьезоэлектроники, однако он является слабым пьезоэлектриком и поэтому, несмотря на наличие термостабильных ориентаций для ОАВ и ПАВ и идеальных упругих свойств, не может использоваться в перспективных разработках (табл. 1).

Таблица 1. Физические характеристики кристаллов ЛГС и ЛГТ в сравнении с кварцем

	Лангасит (La ₃ Ga ₅ SiO ₁₄)	Лангатат (La ₃ Ga _{5 5} Ta _{0,5} O ₁₄)	Кварц (SiO ₂)
Группа симметрии	32 (P321)	32 (P321)	32 (P321)
Параметры решетки, Å	a = 8,162 c = 5,087	a = 8,228 c = 5,124	a = 4.914 c = 5.405
Плотность, г/см3	5,743	6,125	2,649
Модуль Юнга Y ^E ₁₁ , 10 ¹⁰ , Н/м ²	16	11	8
Температура плавления, °С	1470	1450	(Tc = 570)
К ² эмс, %	16	20	7
Пьезомодули, 10-12 Кл/Н			
-d ₁₁	2,7	6,5	2,3
d ₁₄	6,3	4,7	0,9
ТКЧ, 10 ⁶ /°С	1,6	1,5	0,5

Один из изоморфов лангасита — лангатат, является перспективным материалом для изготовления высокотемпературных датчиков давления, работающих на прямом пьезоэффекте. Однако механические свойства кристаллов ЛГТ не исследованы, что определяет актуальность данной работы по исследованию прочности и пластичности кристаллов лангасита и лангатата, работающих в условиях переменных термомеханических нагрузок, во взаимосвязи с их микроструктурой.

Рентгенодифракционное исследование кристаллов ЛГС показало, что кристаллы лантан-галлиевого силиката свободны от двойников и других дефектов и обладают высокой степенью совершенства структуры и качества обработки поверхности (рис. 2).

Анализ кривых качания показал, что полуширина кривой качания не превышает 14 угловых секунд, а максимальная ширина кривой качания не превышает 7 угловых минут, что указывает на высокое совершенство исследованных кристаллов.

В ходе исследования микроструктуры на разных срезах кристаллов после избирательного травления выявлены дефекты структуры, возникшие в процессе роста и механической обработки. Плотность дефектов составляла не менее 10⁵ см⁻². Наблюдались отдельные дислокации и примесные включения, замкнутые блоки и протяженные блочные границы, скопления фигур травления, связанные с химической неоднородно-

стью состава, ростовая полосчатость, что указывает на необходимость совершенствования метода выращивания для получения бездефектных кристаллов (рис. 3).

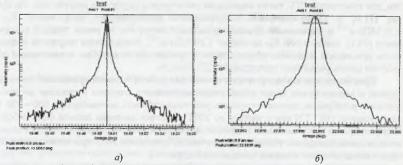


Рис. 2. Кривые качания лангасита, а) отражение (30.0); б) отражение (22.0)

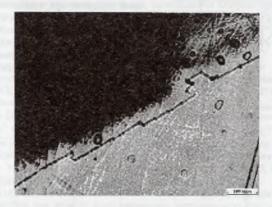


Рис. 3. Блоки и блочные границы в поляризованном свете

Исследование микротвердости по Виккерсу, проведенное при комнатной температуре, выявило анизотропию твердости второго рода кристаллов группы ЛГС (табл. 2).

Таблица 2. Результаты измерений радиальных трещин, длин диагоналей и величин микротвердости для различно ориентированных образцов кристаллов лангасита

Кристаллографическая ориентация образца (hk.l)	H, krc·mm ⁻²	K _{1C} , МПа·м⁻¹/²	
(10.0)	1008	0,88	
(11.0)	1022	0,91	
(00.1)	877	1,16	

Наибольшей микротвердостью обладают срезы [10.0] и [11.0] ориентации, при этом величина микротвердости достигает 1000 кгс/мм². Наименьшей величиной твердости обладает поверхность среза Z (H=880 кгс/мм²). Наряду с анизотропией твердости, для кристаллов ЛГС также характерна анизотропия хрупкости разрушения. На срезах [11.0] и [10.0] величина коэффициента интенсивности напряжений $K_{\rm IC}=0.91$ МПа·м¹ и образование трещин происходит легче, чем на менее твердой поверхности [00.1], для которой $K_{\rm IC}$ достигает 1,16 МПа·м¹. Анизотропия твердости и хрупкости кристаллов позволяет сформулировать требования к способам механической обработки срезов различных ориентаций;

Кристаллы лангатата, предназначенные для работы в знакопеременных температурных и механических полях в двигателях внутреннего сгорания в качестве датчиков давления и вибрации, должны сохранять работоспособность до температур 600 – 900 С при давлении 100 - 250 атм и частоте до 100 Ги. Датчик давления должен быть небольших размеров и при этом высоконалежен. Для оценки работы датчиков в таких условиях проведены измерения усталостной прочности кристаллов ЛГТ при циклическом нагружении со знакопостоянным циклом сжатия (рис. 4).

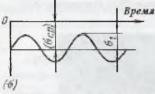


Рис. 4. Знакопостоянный цикл сжатия

Испытания проводились резонансным методом, с приложением статической и динамической нагрузок при комнатной температуре на высокочастотном пульсаторе с электромагнитным резонансным приводом, который позволяет проводить испытания при максимальной статической нагрузке 20 кН, динамической 10 кН при частоте до 300 Гц и температуре от комнатной ло 1200 °C (рис. 5).

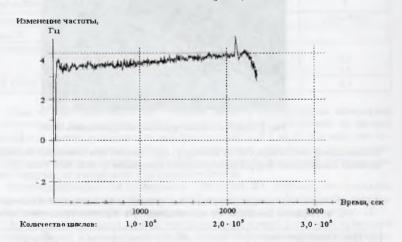


Рис. 5. Зависимость изменения частоты циклов нагружения от времени испытания образца ЛГТ, частота 99 Γ ц, F_{макс,стит.} = -2,0 кH, F_{макс,дин.} = -0,5 кH

Величина предела усталостной прочности исследованных кристаллов ЛГТ при симметричном циклическом нагружении с частотой около $100~\Gamma$ ц составляет от 1,5 до $2~\kappa$ Н при комнатной температуре при количестве циклов нагружения $3\cdot10^5$.