ПОВЕДЕНИЕ ИОННЫХ ДИЭЛЕКТРИКОВ С ДЕФЕКТНОЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ В ОБЛАСТИ ВЫСОКИХ ДАВЛЕНИЙ

Карпенко С. В.

НИИ прикладной математики и автоматизации КБНЦ РАН, Нальчик sv karpenko@mail.ru

Структурные фазовые переходы, в том числе, и В1-В2 типа (структура типа NaCl → структура типа CsCl), являются предметом многочисленных как экспериментальных, так и теоретических исследований [1-4]. Следует особо отметить важность изучения свойств полиморфных превращений в малых кристаллических частицах в связи с активным развитием физики ультрадисперсных систем [5, 6] и широким применением в технике подобных материалов. Размерные эффекты в ультрадисперсных системах (УДС) привлекают большое внимание, так как они приводят к новым, необычным для однородных макроскопических тел, свойствам, важным с точки зрения практического применения. Например, снижение температуры плавления в таких системах [7] используется для получения прилоев; применение ультрадисперсных порошков в качестве добавок при технологических процессах порошковой металлургии резко снижает энергию активации (в частности, спекания) и приводит к увеличению прочности материалов [7]. Причем, важным оказывается вопрос исследования зависимости концентрации таких дефектов в УДС от размера частичек [8]. Строгий теоретический анализ фазовых превращений в малых частицах целесообразно проводить в рамках термодинамики малых систем (метод Хилла) [9, 10], так как термодинамика макроскопических систем Гиббса [11] не позволяет провести корректный учет вкладов в энергию системы поверхностной энергии и энергии дефектов.

Предлагаемая работа посвящена изучению свойств структурных фазовых переходов в щелочно-галоидных кристаллах малых размеров в экстремальных условиях высоких давлений. Особое внимание уделяется расчету давления В1-В2 превращения в зависимости от размера кристалла. Проведено сравнение результатов, полученных при учете поверхностного вклада в термодинамический потенциал системы в рамках подходов Гиббса [11] и Хилла [9].

Многочисленные экспериментальные данные [12] показывают, что давления полиморфных превращений в малых кристаллических частицах отличаются от значений в массивных образцах. Эти особенности связаны с увеличением роли поверхностной энергии при уменьшении размера частиц [13, 14]. В ряде работ [7, 8, 12, 13] сделана попытка объяснения изменения давления или температуры полиморфных превращений, уменьшения параметра решетки, увеличения сжимаемости повышением концентрации вакансий в малых частицах и увеличение ее с уменьшением размера частицы.

В работах [15, 16] было проведено рассмотрение полиморфных превращений типа В1-В2 в щелочно-галоидных кристаллах бесконечного размера. В частности, были получены значения давлений перехода p_0 для 12 соединений типа $M^{\dagger}X$. При давлении $p = p_0$ термодинамические потенциалы G_i В1- и В2-структур равны, что позволяет определить значение p_0 из уравнения

$$G_{B1} = G_{B2}$$
. (1)

В случае кристалла конечных размеров в термодинамический потенциал G_i добавляется слагаемое, описывающее поверхностную энергию частицы. Рассмотрим сначала под-

124

ход Гиббса [11] к построению зависимости термодинамического потенциала от размера кристалла.

Термодинамический потенциал кристалла, находящегося в условиях всестороннего сжатия, может быть представлен в виде

$$G_{B1} = \sum_{k=1}^{7} N_{k}^{(i)} U_{k}^{(j)} \left(a_{k}^{(j)} R^{(j)} \right) - V^{(i)} \frac{\partial}{\partial V^{(i)}} \left[\sum_{k=1}^{7} N_{k}^{(i)} U_{k}^{(i)} \left(a_{k}^{(j)} R^{(j)} \right) \right] - \frac{\alpha_{\mu}^{(i)}}{R^{(i)}} + 4\pi r^{2} k \sigma^{(i)} , \qquad (2)$$

где $U^{(i)}$ – потенциал парного взаимодействия ионов, полученные самосогласованным образом в рамках теории неоднородного электронного газа [17]; $N^{(i)}$ – координационное число; $a_{k}^{(i)} = \frac{R_{k}^{(i)}}{R_{l}^{(i)}}$ – отношение раднусов *k*-й и 1-й координационных сфер; $V^{(i)}$ – объем элементарной ячейки; α_{μ} – постоянная Маделунга; *r* – радиус «кристаллического зерна»; $\sigma^{(i)}$ – удельная поверхностная энергия; *к* – коэффициент, учитывающий отклонение формы кристалла от сферической (для идеального сферического зерна *к* =1); индекс *i* нумерует обе фазы (В1 или В2). Поверхностная энергия σ определяется в рамках

гиббсовского подхода [11, 18] следующим образом (для случая T = 0 K)

$$\sigma(hkl) = \sum_{i} \sum_{j=0}^{\infty} \left(W_{j}^{(i)} - W_{\infty}^{(j)} \right) n_{j}(hkl), \qquad (3)$$

 $W_j^{(i)}$ - энергия одной частицы в *j*-м слое, обусловленная *l*-м типом сил межионного взаимодействия; $W_{a}^{(i)}$ – то же, но в объеме кристалла; $n_j(hkl)$ – число частиц в *j*-й плоскости на единицу площади. Ограничиваясь нулевым приближением, то есть не учитывая поверхностные искажения кристаллической решетки, получим

$$\sigma(hkl) = n_0(hkl) \sum_i \left(W_0^{(i)} - W_{\omega}^{(i)} \right).$$
(4)

Рассмотрим плоскую сетку внутри бесконечного кристалла. Для неискаженного кристалла

$$W_{s}^{(i)} = W_{s}^{(i)} + 2W_{s}^{(i)}, \tag{5}$$

где $W_{S}^{(i)}$ – энергия одной частицы на сетке, обусловленная *i*-м типом сил взаимодействия данной частицы со всеми остальными частицами данной плоскости; $W_{w/2}^{(i)}$ – энергия этой же частицы, определяемая взаимодействием со всеми частицами на всех плоскостях, лежащих выше или ниже данной. Таким образом, энергия одной частицы на поверхностной плоскости неискаженного кристалла

$$W_0^{(i)} = W_3^{(i)} + W_{w/2}^{(0)}.$$
(6)

Исключая из (5) и (6) $W_{\nu/2}^{(i)}$, и подставляя в (4) получим

$$\sigma(hkl) = \frac{1}{2} n_0(hkl) \sum_{l} \left(W_{\pi}^{(l)} - W_{\pi}^{(l)} \right).$$
(7)

Вводя обозначение $\beta^{(i)} = \frac{W_{g}^{(i)}}{W_{w}^{(i)}}$ – отношение сумм по бесконечной плоской сетке и бес-

конечной решетке для *i*-го типа сил взаимодействия ионов, перепишем (7) в виде

$$\sigma(hkl) = \frac{1}{2}n_0(hkl)\sum_{i} (\beta^{(i)} - 1)W_{w}^{(i)}. \qquad (8)$$

Далее, после определения поверхностной составляющей термодинамического потенциала (12), расчет давления B1-B2 перехода проводился по описанной в [16] схеме: давление перехода p_0 в зависимости от радиуса кристалла r определяется в результате численного решения на ЭВМ уравнения (1). В таблице 1 приведены значения давления B1 – B2 перехода для щелочно-галоидных кристаллов конечных размеров. Данные таблицы убедительно свидетельствуют о четкой зависимости давления полиморфного превращения от размера кристаллах.

Кри- сталл	R ₀ , Å								
	25		75		125		250		Бесконечный кристалл [16]
	а	б	a	б	a	6	а	б	
LiF	151	130	221	210	236	229	264	261	302
LiCl	220	201	182	170	172	161	169	167	149
LiBr	158	143	130	116	119	108	113	112	100
NaF	296	265	219	191	182	167	160	158	154
NaCl	174	159	144	143	142,8	141	142	140,2	138
NaBr	61	58	48	47	45	45,5	44	44,4	45
KF	134	119	110	106	106	102	100	99,4	89
KCl	43	38	36	33	33,5	32,4	32	31,7	29
KBr	46	41	38	34	36	32,5	34	31,5	29
RbF	48	43	41	37	38	36,1	37	35,2	34
RbCl	25	22	22	20,3	20,8	19,5	20,3	19	17
RbBr	20	17	18	16	17	15,6	16	15,1	14

Таблица І. Давление В1 – В2 перехода для щелочно-галоидных соединений в зависимости от размера кристалла

Примечание: *a* – расчет в рамках подхода Гиббса; *б* – расчет в рамках термодинамики малых систем.

Анализ данных табл. 1 показывает, что для всех щелочно-галоидных кристаллов, за исключением фторида лития, давление полиморфного превращения возрастает при уменьшении размера кристалла. Причем, для несферического кристалла ($\kappa = 2$) давление перехода оказывается в среднем на 8 – 10 % выше, чем для идеального сферического кристалла ($\kappa = 1$). Для кристалла фторида лития ситуация прямо противоположная: при уменьшении размера кристалла давление B1-B2 перехода уменьшается. Такое аномальное поведение кристалла LiF связано с различием энергии когезии кристаллической решетки: для фторида лития когезионная энергия значительно больше, чем для остальных представителей галоидного ряда. Этот факт, в свою очередь, приводит к более высокому значению давления полиморфного превращения для кристалла LiF бесконечно большого размера. Как показывают расчеты [19], поверхностная энергия кристалла фторида лития при таких условиях в фазе со структурой типа CsCl (B2) меньше, чем в фазе со структурой типа NaCl (B1), поэтому поверхностный вклад $G^{(nowpx)}$ в термодинамический потенциал «ускоряет» фазовый переход, снижая давление полиморфного превращения.

Однако, в рамках термодинамики Гиббса [11] возникает ряд принципиальных трудностей при изучении свойств малых систем, что обусловлено существенностью вклада поверхности и дефектов структуры в энергетическое состояние системы. Подобная ситуация приводит к нарушению аддитивности термодинамического потенциала системы, лишая его определенного смысла. Кроме того, макроскопическая термодинамика не позволяет провести корректный учет дефектности структуры [14, 20], а дан126

ный вопрос является принципиально важным при анализе полиморфных превращений при высоких давлениях в малых кристаллических частицах. В работах [10, 14, 20, 21] для устранения описанных противоречий впервые на примере анализа кластеризованного состояния расплавов был использован подход термодинамики малых систем – метод Хилла [9]. В данном подходе термодинамические параметры системы есть статистические средние по ансамблю «малая система – внешняя среда». Таким параметром, в частности, является избыточная поверхностная энергия частицы. В гиббсовском подходе изменение термодинамического потенциала, необходимое для образования и роста зародыша новой фазы при полиморфном превращении, определяется выражением [11]

$$\Delta f_n = \frac{\Delta I_n^*}{kT} = -\alpha n + \beta n^{\gamma_1}, \qquad (9)$$

где $\alpha = \frac{\Delta \mu + \epsilon}{kT}$; $\Delta \mu$ – разность химических потенциалов в двух фазах; ε – параметр, характеризующий затрату энергии на деформацию исходной фазы в области зародыша; n– число атомов в зародыше; $\beta = \frac{\alpha_0 \sigma v_a^2}{kT}$; α_0 – коэффициент формы зародыша; σ – поверхностное натяжение на границе раздела фаз; v_a – объем зародыша в расчете на один атом. Сложность анализа малых систем связана также с тем, что флуктуации термодинамических величин сравнимы со значениями самих величин, что не позволяет считать их макроскопическими. Поэтому выражение (9) не применимо к частицам микроскопических размеров. Поэтому в данную формулу вводится слагаемое, зависящее от размера объекта [14]

$$\Delta f_n = -\alpha n + \beta n^{\frac{1}{2}} - \gamma n^{\frac{1}{2}}, \qquad (10)$$

где для кластеров в расплаве или в твердом теле $\gamma = \frac{H(\chi/\upsilon_a)^{Y_i}}{kT}$; H – энтальния в расче-

те на атом; χ – сжимаемость; *n* – число атомов в кластере. Причем величина поверхностного натяжения σ в (10)должна вычисляться с учетом размера частиц и коэффициента формы α_0 .

Как уже упоминалось ранее, учет дефектности структуры оказывается принципиально важным при рассмотрении полиморфных превращений в малых кристаллических частицах, причем при B1–B2 переходе наиболее велика роль вакансий [7, 8, 12]. Из вышеизложенного с очевидностью следует, что корректный учет вкладов дефектов в энергию системы в рамках макроскопической термодинамики Гиббса невозможен [14, 20, 21], поэтому воспользуемся подходом метода Хилла [9, 10] к построению термодинамического потенциала кристалла конечных размеров.

Термодинамический потенциал ансамбля дисперсных частиц без вакансий может быть представлен в виде

$$G(T, p, r) = Nn \left[\mu_0 \left(T, p + \frac{2\sigma}{r} \right) + \frac{\sigma \upsilon_0}{r} \right], \tag{11}$$

где $n = \frac{4\pi r^3}{3v_0}$ - число атомов в частице; N – число частиц. Выражение в квадратных

скобках в (11)

$$\widehat{\mu}_r(T, p) = \mu_0 \left(T, p + \frac{2\sigma}{r}\right) + \frac{\sigma \upsilon_0}{r}$$

носит название «интегрального» химического потенциала ансамбля малых систем [9] в отличие от «дифференциального» химического потенциала, определяемого как производная от термодинамического потенциала G(T, p, r) по числу частиц

$$\mu_r(T,p)=\mu_0\left(T,p+\frac{2\sigma}{r}\right).$$

Воспользуемся квазихимическим подходом [22], в котором в соответствующие формулы входят интегральные, а не дифференциальные химические потенциалы подсистем. При T = const и p = const равновесная концентрация вакансий в кристалле определяется термодинамическим потенциалом образования вакансии $g_v(T, p)$, который равен изменению термодинамического потенциала системы при образовании одной вакансии [8]

$$C(T, p) = \exp\left(-g_{\upsilon}/kT\right) = \exp\left(S_{\upsilon}/k - (\varepsilon_{\upsilon} + p\upsilon_{\upsilon})/kT\right), \tag{12}$$

$$S_{v} = -\left(\frac{\partial g_{v}}{\partial T}\right)_{p}, \quad v_{v} = \left(\frac{\partial g_{v}}{\partial p}\right)_{T},$$
 (13)

где ε_v – энергия образования вакансии; S_v , v_v – колебательная энтропия и объем вакансии. Для малой кристаллической частицы сферической формы (12) принимает вид

$$C(T, p) = \exp\left(S_{\nu}/k - \left(\varepsilon_{\nu} + p\upsilon_{\nu} + \frac{2\sigma\upsilon_{\nu}}{r}\right)/kT\right), \tag{14}$$

где о – удельная поверхностная энергия, усредненная по различным кристаллографическим поверхностям. Для простоты модели будем считать, что в фазе B1 кристалл имеет огранку (100), а в B2-фазе - (110), так как при нулевом внешнем давлении именно эти грани обладают минимальной поверхностной энергией [3].

Рассматривая вещество как слабый раствор вакансий, термодинамический потенциал бинарного твердого раствора можно представить в виде [8]

$$G(T, p, N_A, N_B) = N_A \mu_{AA} + N_B \mu_{BB} + N_{AB} \mu_{AB} - TS_{-*}, \qquad (15)$$

где N_{A} , N_{B} – число атомов компонент; N_{AB} – число пар ближайших соседей из частиц разных сортов; Z – координационное число; $\mu_{ij}(T, p) = \mu \begin{bmatrix} U_{ij} \end{bmatrix}$ – химические потенциалы чистых подсистем; $U_{ij}(|\vec{r}_{i} - \vec{r}_{j}|)$ – потенциалы парного взаимодействия [17]. При i = jчистая подсистема совпадает с чистой компонентой А или В, а чистая AB - подсистема представляет собой однокомпонентную систему, атомы которой взаимодействуют с парным потенциалом U_{AB} . Если одной из компонент являются вакансии: $B \rightarrow v$, $N_{v} << N_{A}$, $p_{Av} \approx ZN_{v}$ и выражение (15) записывается в стандартном для кристалла с вакансиями (слабого раствора) виде

$$G = G_0(T, p, N_A) + N_{\rm o}g_{\rm o} - kT \ln\left(\frac{(N_A + N_{\rm o})!}{N_A!N_{\rm o}!}\right),\tag{16}$$

где $G_0 = N_A \mu_{AA}(T, p) = N_A \mu_0(T, p)$ – термодинамический потенциал идеального кристалла (без вакансий), а g_ν определяется, в силу (15), следующим образом

$$g_{\nu} = 2\mu_{A\nu} - \mu_{AA} \,. \tag{17}$$

Величина μ_{A} определяется из условия $g_{\nu} \to 0$ при $\Phi_{A} \to 0$ [12]. Тогда

$$g_{\upsilon} = -[f_0(T,\upsilon_0) - f_k(T,\upsilon_0)] + kT + p(d\upsilon_{\upsilon} - \upsilon_0), \qquad (18)$$

$$d \approx 1 + \frac{v_0}{v_0}, \qquad (19)$$

где $\upsilon_0 = \left(\frac{\partial \mu_0}{\partial p}\right)_T$ – атомный объем идеального кристалла; f_k – кинетическая часть сво-

бодной энергии кристалла в расчете на атом; $f_0 = \mu_0 - pv_0$; $d \sim$ параметр, определяюний отклонение формы кристалла от сферической. Поскольку $U_{Av} = 0$, то поверхностная энергия в Av – подсистеме равна нулю, но по смыслу квазихимического приближения она находится под тем же давлением $p + \frac{2\sigma}{r}$, что и чистая (дисперсная) компонента Следовательно

$$g_{\upsilon}(T, p, r) \approx g_{\upsilon}(T, p) + \frac{2\sigma}{r} \left(\upsilon_{\upsilon} - \frac{1}{2}\upsilon_{0}\right).$$
⁽²⁰⁾

После определения зависимости термодинамического потенциала кристалла с вакансиями от давления, из уравнения (1) при его численном решении определяется значение давления полиморфного B1 - B2 превращения; соответствующие результаты приведены в таблице 1. Анализ приведенных в таблице 1 результатов позволяет сделать вывод о том, что учет вакансионных вкладов приводит к снижению значений давления полиморфного превращения по сравнению с результатами, полученными в рамках гиббсовского подхода для идеальных кристаллов.

Список литературы

- Структурные фазовые переходы в кристаллах под воздействием высокого давления. / под ред. Александрова К.С. Новосибирск: Наука. 1982. 140 с.
- 2. Rezai-Ford A.R., Anwar J., Clarr S.M. // Mater. Sci. Forum. 1996. V. 228. Part 1. p. 375.
- Ухов В.Ф., Кобелева Р.М., Дедков Г.В., Темроков А.И. Электронно-статистическая теория металлов и ионных кристаллов. М.: Наука. 1982. 160 с.
- 4. Burakovsky L., Preston D.L., Silbar R.R. // Phys. Rev. B. 2000. v. 61. N. 22. p. 15011.
- 5. Иванов А.С., Любов Б.Я. // Поверхность. 1983. № 9. С. 104.
- 6. Alymov M.I., Shorshorov M.Kh. // Nanostructured Materials. 1999. v. 12, p. 365.
- 7. Морохов И.Д., Петинов В.И., Трусов Л.И., Петрунин В.Ф.//УФН. 1981. Т. 133. Вып. 4. с. 653.
- 8. Морохов И.Д., Зубов В.И., Федоров В.Б. // ДАН СССР. 1983. Т. 269. № 1. С. 101.
- 9. Hill T.L. Thermodinamic of small system. N.: Benjamin inc. Part 1, 1963; Part 2, 1964, 370 p.
- Шоршоров М.Х., Манохин А.И. Теория неравновесной кристаллизации плоского слитка. М.: Наука. 1992. 112 с.
- 11. Гиббс Д.В. Термодинамические работы. М.: Иностр. лит-ра. 1950. 492 с.
- Морохов И.Д., Трусов Л.И., Чижик Л.П. Ультрадисперсные металлические среды. М.: Атомиздат. 1977. 262 с.
- 13. Комник Ю.Ф. Физика металлических пленок. М.: Атомиздат. 1979. 312 с.
- 14. Шоршоров М.Х. // Материаловедение. 2000. № 5. с. 6.
- 15. Карпенко С.В., Кяров А.Х., Темроков А.И. // ТВТ. 2000, Т. 38. № 5. с. 748.
- 16. Карпенко С.В., Винокурский Д.Л., Темроков А.И. // Материаловедение. 2001. № 5. с. 8.
- 17. Кяров А.Х., Темроков А.И. // Известия ВУЗов. Физика. 1994. № 5. с. 3.
- 18. Дедков Г.В., Темроков А.И. // Известия ВУЗов. Физика. 1979. № 2. с. 19.
- 19. Szasz L. // Ztchr. Naturforsch. 1977. Bd. 32a. s. 252.
- 20. Шоршоров М.Х. // Материаловедение. 2001. № 2. с. 2.
- 21. Шоршоров М.Х. // ДАН. Т. 377. № 2. с. 190.
- 22. Алымов М.И., Шоршоров М.Х. // Металлы. 1999. № 2. с. 29.

128