СТРУКТУРНЫЕ МЕХАНИЗМЫ УПРОЧНЕНИЯ АЗОТСОДЕРЖАЩИХ Fe-Mn-(Cr) СПЛАВОВ

Лоладзе Л. В., Эфрос Н. Б., Занка Т. П., Тютенко В. С., Эфрос Б. М., Барюхин В. Н.

Донецкий физико-технический институт им. А.А.Галкина НАН Украины Донецк, Украина

Введение

Развитие современной техники связано с использованием новых высокопрочных материалов со специальными свойствами. Азотсодержащие Fe-Mn-(Cr) аустенитные сплавы (AAC), благодаря уникальности своих свойств (высокому уровню прочности, пластичности и вязкости разрушения, повышенной коррозионной стойкости, немагнитности и др.), являются перспективными материалами для использования в различных областях промышленности [1, 2]. Поэтому поиск оптимальных концентраций азота и рациональных параметров термопластической обработки AAC, обеспечивающих требуемый комплекс физико-механических и эксплуатационных свойств, представляет большой интерес.

Матерналы и методы исследования

В качестве объектов исследования были выбраны аустенитные нержавеющие сплавы на основе Fe-Mn -(Cr)-твердого раствора, имеющие критические точки $M_{\rm H}$ и $M_{\rm A}$ ниже комнатной температуры, в которых концентрация азота $C_{\rm N}$ варьировалась до 0,8 мас. %.

В качестве способов пластической деформации использовались одноосное растяжение и способ выдавливания жидкостью высокого давления методом гидроэкструзии (ГЭ) со степенями деформации e = 0-0,7 ($e = \ln R$, где R – вытяжка экструдата). Образцы ААС после ГЭ подвергались старению в интервале температур $T_{CTAP} = 400-800^{\circ}$ С с выдержкой τ_{CTAP} до 10 ч.

Механические свойства образцов ААС определяли по результатам статических испытаний на растяжение (ГОСТ 1497-84) на универсальной машине усилием 98 кН со средней скоростью 10⁻⁴ с⁻¹. Для анализа кривых пластического течения *S*--е и характера упрочнения ААС в интервале равномерной деформации использовали модели Холломона и Людвигсона [3].

Структура ААС исследовалась методом оптической микроскопии на приборе "Neophot-32."

Результаты эксперимента и обсуждение

Получение высокопрочных состояний в ГЦК твердых растворах замещения и внедрения типа ААС возможно с помощью реализации следующих механизмов упрочнения: твердорастворного, зернограничного, дисперсионного и дислокационного (деформационного).

Твердорастворное упрочнение. Вклад твердорастворной компоненты $\Delta \sigma_{TB}$ в упрочнение ГЦК-твердых растворов замещения и внедрения типа ААС в значительной степени связан с величиной C_N [1]. Наши экспериментальные результаты на примере

сплава X18Г18 (рис.1) показывают, что зависимость $\Delta \sigma$ тв – C_N в интервале C_N до ~ 0,8 мас. % можно аппроксимировать следующим линейным соотношением:

200

Рис. 1. Влизние концентрации азота C_N на твердорастворную компоненту $\Lambda \sigma_{TB}$ предела текучести $\sigma_{0.2}$ (YS) (1) и предела прочности σ_B (UTS) (2) и величину критической деформации e_{KP} (3) сплава X18Г18

Рис. 2. Дополнительный механизм деформационного упрочнения ААС (обозначения см. в тексте)

$$\Delta \sigma_{\rm TB} = \sigma_0 + K_\sigma C_{\rm N},$$

где σ_0 – прочность сплава без азота; K_{σ} – концентрационный коэффициент прочности; C_N – концентрация азота (мас.%).

Оценка данных параметров даследующие значения: $\sigma_0 =$ ла 255 МПа; K₀ = 495 МПа/% для 00.2 и $\sigma_0 = 525$ МПа, $K_{\sigma} = 785$ МПа/% для ов, соответственно. Одна из причин высокой эффективности компоненты твердорастворного упрочнения ААС [2.3] может быть связана с особенностями движения расщепленной дислокации - двойникующая дислокация Шокли a/6<211> переводит атомы внедрения из октаэдрических междоузлий в тетраэдрические (рис. 2).

Поскольку радиус теграэдрической поры в ~ 2 раза меньше радиуса октаэдрической поры, то атомы азота, попадая в теграэдрическое междоузлие, создают большие упругие искажения кристаллической решетки, которые должны преодолеваться силовым образом или с помощью термических флуктуаций.

Зернограничное упрочнение. Зависимости предела текучести $\sigma_{0.2}$ от размера зерна d_3 для различных концентраций C_N и зернограничного коэффициента K_7 от концентрации C_N в ААС на примере сплава X18Г18 представлены на рис. 3. Видно, что зависимость $\sigma_{0.2}$ - d_3 согласуется с соотношением Холла-Петча:

> $\sigma_{0.2} = \sigma_i + \Delta \sigma_{3\Gamma},$ $\Delta \sigma_{3\Gamma} = K_Y d_3^{-1/2},$ $K_Y = K_Y^0 + K C_N$

Оценка параметров в данных соотнолгениях показала следующие значения: сопротивление деформации для $d_3 \rightarrow \infty - \sigma_1 = 230$ МПа, зернограничный коэффициент $K_X = 25$ МПа мм^{1/2} для $C_N = 0.3$ мас.%; $\sigma_1 = 0.3$ 410 МПа, $K_{\rm Y}$ = 32 МПа мм^{1/2} для $C_{\rm N}$ = 0,7 мас.%; зернограничный коэффициент в отсутствие азота $K_{\rm Y}^0$ = 25 МПа·мм^{1/2}; концентрационный коэффициент K = 11,7 МПа мм^{1/2}/%. Вилно, что величина зернограничного коэффициента $K_{\rm Y}$ с увеличением $C_{\rm N}$ воз-

Рис. 3. Влияние размера зерна d_3 на изменение предела текучести $\sigma_{0,2}$ (YS) сплава X18A0,3Г18 (1) и X18A0,7Г18 (2) и концентрации азота C_N на зернограничный коэффициент K_Y (3) сплава X18Г18

Рис. 4. Изменение твердости HV ААС на примере сплава X14A0,45Г10СФ в зависимости от параметров старения T_{CTAP} и τ_{CTAP}

растает в ААС. Однако вклад зернограничного упрочнения в исследованном интервале d₃ для рассмотренных ААС меныше, чем вклад в напряжение течения от твердорастворного упрочнения.

Дисперсионное упрочнение. Для ААС с высоким содержанием азота упрочнение. обусловленное механизмом дисперсионного твердения в результате выделения частиц фазы Cr2N, может быть существенным [1,3]. На рис.4 представлены температурные зависимости изменения твердости HV ААС на примере сплава Х14А0,45Г10СФ в зависимости от параметров старения ТСТАР И ТСТАР.

Как видно из графиков, изменение HV-тстар носит экстремальный характер, что обусловлено наличием следующих стадий: стадия зарождения (восходящая ветвь кривой HV-тстар), стадии выделения и роста (коагуляции) частиц избыточной фазы (плато и нисходящая ветвь кривой HV- тотар). Максимальное значение твердости HV = 3200 МПа пля сплава Х14А0,45Г10СФ достигается при следующих параметрах старения: $T_{CTAP} = 500-550^{\circ}C$ и $\tau_{CTAP} = 1.5$ -2,5 ч (при этом величина ΔHV ≈ 410 МПа).

Деформационное упрочнение. Анализ кривых деформационного

упрочнения ААС при одноосном растяжении в зависимости от C_N (рис. 5) показывает наличие положительного отклонения Δ от кривой S - e, описываемой соотношением Холломона при низких уровнях деформации ($e < e_{KP}$), которое связано с наличием высокого значения компоненты планарности в дислокационном скольжении (модель Людвигсона) [4].

Рис. 5. Влияние концентрации азота $C_{\rm N}$ на зависимость истинное напряжение S-истинная деформация *е* сплава X18Г18: $1 - C_{\rm N} = 0,3$ мас. %; $2 - C_{\rm N} = 0,7$ мас. %

Видно, что рост C_N увеличивает стадию планарного скольжения до более высоких степеней дсформации $e = e_{KP}$ (см. рис. 1 и 5). Одной из основных причин данного эффекта может быть снижение величины энергии дефектов упаковки аустенита $\gamma_{ДY}$ [1]. Экспериментальные исследования показали наличие более высокого значения коэффициента упрочнения AAC при деформации по схеме одноосного растяжения (выше критической степени деформации e_{KP}) по сравнению с деформацией по схеме одноосного сжатия. Данный эффект, по-видимому, связан с индуцированием внешним полем напряжений и, следовательно, дополнительным расщеплением дислокаций (эффект Копли-Кера) (рис. 6).

Рис. 6. Эффект Копли-Кера в поликристаллах на основе ГЦК твердого раствора замещения и внедрения в зависимости от схемы деформации

Возможность проявления эффекта Копли-Кера в поликристаллах AAC связано с изменением интенсивности текстурных максимумов и, следовательно, более активным развитием планарного скольжения и механического двойникования при пластической деформации [3, 4].

202

Термомеханическое упрочнение. Дальнейшее повышение прочностных свойств ААС может быть достигнуто путем суперпозиции различных механизмов упрочнения. например, деформационного (дислокационного) и дисперсионного [2]. Выбор оптимальных режимов старения образцов ААС после ГЭ существенно упрощается, если известны закономерности изменения максимальных значений НУ в зависимости от е, $T_{\text{СТАР}}$ и $\tau_{\text{СТАР}}$. Нами было показано, что оптимальная $T_{\text{СТАР}}$ находится в области 500°С, а оптимальная величина тстар при данной Тстар зависит от степени деформации ГЭ: для 0,2 < е > 0,6 величина т_{СТАР} составляет ≈1 ч. С целью количественной оценки эффекта старения экструдатов ААС, а также эффективности влияния комбинированного воздействия ГЭ и старения методами ТМО на изменение прочностных свойств, находилась величина максимального приращения твердости ΔHV экструдатов X14A0,5Г10СФ после старения по оптимальным режимам (рис. 7).

Рис. 7. Изменение приращения максимальной твердости ΔHV сплава X14A0,5Г10СФ после ГЭ и последующего старения:

203

1 - экстраполяционная кривая;

2 - экспериментальная кривая

Анализ данных зависимостей показал, что влияние старения (по оптимальным режимам) на повышение HV экструдатов ААС неаддитивно. С ростом *е* при ГЭ наблюдается мультипликативный эффект: приращение максимальной твердости HV возрастает от 9 % для e = 0,1 до 17,5 % для e = 0,7.

Выводы

Определен вклад твердорастворного и зернограничного факторов в упрочнение ААС.

Оценена роль механизмов дисперсионного твердения и деформационного (дислокационного) упрочнения в повышении прочностных характеристик ААС.

Установлены оптимальные режимы термомеханической обработки, позволяющие обеспечить повышенный комплекс механических свойств ААС.

Список литературы

- О.А. Банных, В.М. Блинов, Дисперсионно-твердеющие немагнитные ванадий-содержащие стали, Металлургия, Москва (1980.
- 2. Э.В. Козлов, Л.А. Теплякова, Н.А. Конева, Изв вузов. Физика №3, 33 (1996).-
- 3. N.V. Shishkova, B.M. Efros, STEEL GRIPS 2, 629 (2004).
- 4. Ю.И. Чумляков, И.В. Киреева, А.Д. Коротаев, Изв. Вузов. Физика № 3, 5 (1996).