УДК 669.017 МЕТОДЫ ПРОГНОЗИРОВАНИЯ КИНЕТИЧЕСКИХ КРИВЫХ И КОНЕЧНЫХ ПАРАМЕТРОВ ОКИСЛЕНИЯ ПОЛИМЕРОВ

Долбин И. В.

НИИ прикладной математики и автоматизации КБНЦ РАН, Нальчик

Как известно [1], кинетические кривые окисления $N_{O_2}(t)$ автозамедленного типа, экспоненциально убывающие во времени, описываются следующим эмпирическим уравнением:

$$N_{O_2} = N_{O_2}^{\alpha} (1 - e^{-k_d t}), \qquad (1)$$

где $N_{O_2}^{=}$ – предельное количество кислорода, способное поглотиться при окислении, k_d – эффективная константа скорости окисления, l – время.

Зависимость (1) обычно объясняется неоднородностью структуры полимера, которая определяет заметные различия в скоростях окисления отдельных ее участков. Поскольку более реакционноспособные участки окисляются в первую очередь, после их практически полного превращения скорость суммарного процесса сильно снижается. Кроме того, было показано, что величина $N_{0_1}^*$, определяемая с помощью формулы (1) может быть во много раз ниже концентрации мономерных звеньев в индивидуальном полимере: во время опыта некоторая часть этих звеньев ведет себя как инертное вещество [2].

Известно, что значение k_d зависит от температуры и структуры полимера [1]. В уравнении (1) эффективная константа скорости окисления k_d по своему физическому смыслу является подгоночным коэффициентом, определяемым из соотношения между скоростью реакции W и концентрацией реагирующих веществ [**A**] и [**B**] [2]:

$$W = k_d[\mathbf{A}]^p[\mathbf{B}]_q,\tag{2}$$

где p и q - порядок реакции по реагентам [A] и [B], соответственно.

Хотя и подчеркивается [1], что величина k_d зависит от структуры полимеров, но конкретной формы такой зависимости в настоящее время не установлено. Развитие в последние годы методов фрактального анализа [3–5] дает инструмент для получения количественной взаимосвязи параметров уравнения (1) $N_{0_2}^{w}$ и k_d со структурой полимеров. В работах [6, 7] эти вопросы рассмотрены на примере расплавов ПАр и ПААСО, полученных разными способами поликонденсации.

На рис. 1 приведены кинетические кривые $N_{o_2}(t)$ для ПАр при одной и той же температуре теплового старения 723 К. Как можно видеть, поглощение кислорода зависит от метода поликонденсации, которым получен полимер, или от его структуры.

Оценки параметра $N_{O_2}^{\infty}$, согласно уравнению (1), показали значительную (до трех раз) вариацию его величины для полученных разными способами поликонденсации полимеров даже при одной и той же температурс теплового старения. Это означает, что предельное количество поглощаемого кислорода в уравнении (1), по существу, является подгоночным параметром. В то же время оценки показали [8], что для окисления всех метильных и алифатических групп ПААСО требуется $N_{O_1}^* \approx 24,1$ моль O₂/осн. моль полимера. Кроме того, из данных рис. 1 следует, что при некотором значении N_{O_2} кинетические кривые $N_{O_2}(t)$ достигают своего асимптотического значения $N_{O_4}^{\infty}$, т.е.,

205

выходят на плато. Величина $N_{0_1}^{sc}$ зависит от температуры теплового старения и способа поликонденсации, т.е., от структуры полимера, характеризуемой размерностью Δ_r

Особенно четко выход кривых $N_{O_1}(t)$ на участок плато прослеживается для высоких температур теплового старения, где процессы термоокислительной деструкции протекают достаточно быстро (см. рис. 1). В рамках классического подхода выход кинетических кривых на участок плато объясняется «выгоранием» реакционноспособных групп. Кроме того, уравнение (1) предполагает, что условие $N_{O_2} = N_{O_2}^{\infty}$ достигается только при $t \to \infty$.

В рамках теории дробных производных величина $N_{O_2}^{\infty}$ оценивается согласно уравнению:

$$N_{O_1}^{\infty} = \beta_d N_{O_1}^{\tau}.$$
 (3)

где β_d – доля макромолекулярного клубка.

Далее можно построить зависимость $N_{O_2}^{ac}$ от величины β_d , т.е., доли макромолекулярного клубка, подвергающейся деструкции. Такая зависимость приведена на рис. 2 и из нее следует линейная корреляция между $N_{O_1}^{ac}$ и β_d , по наклону которой можно определить коэффициент пропорциональности, равный ~ 24,4 моль O₂/осн. моль полимера.

Рис. 1. Кинетические кривые поглощения кислорода $N_{o_2}(t)$ при $T_{cr} = 723$ К для ПАр-1 (1), ПАр-2 (2) и ПАр-3 (3) [7]

Рис. 2. Зависимость количества поглощенного кислорода $N_{O_2}^{se}$ на плато кинетических кривых $N_{O_2}(t)$ от параметра β_d для ПАА-CO-1 (1), ПААСО-2 (2), ПААСО-3 (3) и ПААСО-4 (4) [7]

Эта величина превосходно согласуется с оценкой предельного количества поглощенного кислорода $N_{O_2}^{\dagger}$, рассчитанного по химическому строению ПААСО. Следовательно, выход кинетических кривых $N_{O_2}(t)$ на плато означает деструкцию доступной для этого процесса части макромолекулярного клубка, характеризуемой параметром β_{d} . Далее этот процесс замедляется и может завершиться полным разрушением макромолекулярного клубка только при $t \to \infty$ (уравнение (1)) [6].

Изложенные выше соображения предполагают, что увеличение β_d должно привести к повышению скорости термоокислительной деструкции и, как следствие, к росту k_d . По аналогии с уравнением (1) для кинетических кривых $N_{o_2}(t)$ автозамедленного типа можно записать [43]:

$$N_{O_2} = N_{O_2}^{\dagger} \beta_d (1 - e^{-c \beta_d t}), \qquad (4)$$

где *с* – константа.

Уравнение (4) довольно успешно (при $c = 0.5 \times 10^{-4}$) описывает экспериментальные кривые $N_{\odot,}(t)$, что подтверждается данными рис. 3.

Тем не менее, нет оснований рекомендовать его для этих целей, как минимум, по двум причинам. Во-первых, в этом уравнении вновь появляется эмпирический подгоночный коэффициент c. Во-вторых, как следует из данных рис. 3, наблюдается некоторое качественное несоответствие экспериментальных и теоретических кривых $N_{o_n}(t)$.

Причина этого несоответствия очевидна: для описания процессов во фрактальных пространствах следует использовать функцию Миттаг-Лефлера, а не экспоненциальную функцию, строго корректную только для евклидовых пространств [9]. Тем не менее, уравнение (4) полезно с той точки зрения, что сравнение показателей экспонент этого уравнения и соотношения (1) позволяет получить следующую аппроксимацию [7]:

$$k_d \approx 0.5 \times 10^{-4} \beta_d. \tag{5}$$

На рис. 4 приведено соотношение между k_d и 0,5 × 10⁻⁴ β_d , которое хорошо аппроксимируется линейной корреляцией с единичным наклоном, проходящей через начало координат. Это обстоятельство позволяет утверждать, что величина k_d является функцией структуры макромолекулярного клубка. При $\beta_d = 0$ (или $\Delta_f = d = 3$) термоокислительная деструкция прекращается ($k_d = 0$). Это положение подтверждается хорошо известным на практике случаем: термоокислительная деструкция не реализуется в кристаллических областях аморфно-кристаллических полимеров, поскольку указанные области являются трехмерно упорядоченным евклидовым объектом [2].

Рис. 3. Моделирование кинстических кривых $N_{O_2}(t)$ с помощью уравнения (4) для ПААСО-1 при $T_{ct} = 623$ (1, 3) и 673 К (2, 4). 1, 2 – экспериментальные данные; 3, 4 – теоретический расчет [7]

Рис. 4. Соотношение между константой скорости термоокислительной деструкции k_d и параметром 0,5 × 10⁻⁴ β_d для ПАр (1) и ПААСО (2) [7]

Таким образом, методы фрактального анализа и дробного дифференцирования позволяют получить количественные соотношения параметров термоокислительной деструкции и структуры полимерных расплавов. Процесс поглощения кислорода в ходе деструкции контролируется как химическим строением полимера $(N_{O_{\parallel}}^{\tau})$, так и структурой макромолекулярного клубка (Δ_{Γ} или β_{d}) [6, 7].

Для полной и теоретически корректной характеристики фрактальных объектов необходимо использовать, как минимум, три размерности [10]. Существует ряд методов, позволяющих решить эту задачу и определить следующие размерности: размерность евклидова пространства d_i в котором протекает процесс окисления; фрактальная (Хаусдорфова) размерность макромолекулярного клубка Δ_f , описывающая его структуру; эффективная спектральная размерность d'_i , характеризующая связность клубка, а также степень временного (энергетического) беспорядка системы. Химическое строение полимера учитывается параметром $N^*_{O_1}$, который рассчитывается аналитически и для ПААСО и IIAp не зависит от способа поликонденсации [11].

Для кривых N₀₂(1) автозамедленного типа характерен процесс окисления, описываемый как псевдо-мономолекулярная реакция (реакция молекул оксиданта с реакционноспособными центрами макромолекул). Такая реакция описывается в общем виде уравнением [12]:

$$N_{O_2} = N_{O_2}^{\infty} \left[1 - \exp\left(- K t^{d_1/2} \right) \right], \tag{6}$$

где К – константа.

Вид указанного уравнения позволяет сделать следующее предположение: константа K определяет долю макромолекулярного клубка, подвергающуюся термоокислительной деструкции (чем больше K, тем выше $N_{O_2}(t)$ и тем интенсивнее процесс деспрукции), что дает [11]:

$$K = d - \Delta_f. \tag{7}$$

Затем можно окончательно записать уравнение (6) в форме, не содержащей эмпирических параметров, и поэтому пригодной для прогнозирования кинетических кривых $N_{O_2}(t)$ [11]:

$$N_{O_2}(t) = N_{O_2}^{\dagger} \left(d - \Delta_f \right) \cdot \left[1 - \exp\left(- \left(d - \Delta_f \right) \cdot t^{d_f/2} \right) \right].$$
(8)

Уравнение (8) включает все необходимые размерности: d, $\Delta_f u d'_s$.

На рис. 5 в качестве примера приведено сравнение кривых $N_{O_2}(t)$, полученных экспериментально и рассчитанных согласно уравнению (8) для ПААСО-1 при трех температурах теплового старения T_{art} 623, 673 и 723К ($\Delta_f = 2,78, 2,40$ и 2,0, соответственно).

Рис. 5. Сравнение экспериментальных (1-3) и рассчитанных по уравнению (8) (4-6) кинетических кривых $N_{o_2}(t)$ для ПААСО-1 при температурах теплового старения T_{cri} 623 (1, 4); 673 (2, 5)

турах теплового старения T_{cr} : 623 (1, 4); 673 (2, 5) и 723 К (3, 6) [11]

Рис. 6. Сравнение экспериментальных $N_{O_1}^3$ и рассчитанных по уравнению (8) $N_{O_1}^p$ величин количества поглощенного кислорода за время t = 0,5 час для ПААСО-1 (1), ПААСО-2 (2), ПААСО-3 (3) и ПААСО-4 (4) в интервалс $T_{cr} = 573 \div 723$ К [11]

Как можно видеть, уравнение (8) позволяет прогнозировать кривые $N_{O_2}(i)$ с достаточно высокой степенью точности [11].

На рис. 6 показано сравнение величин N_{O_2} при t = 0,5 час. для всех рассмотренных ПААСО в интервале $T_{or} = 573 \div 723$ К, полученных экспериментально и рассчитанных согласно уравнению (8).

Вновь получено хорошее соответствие теории и эксперимента. Отметим, что оценка величины $N_{0_2}^*$, согласно уравнению (1), для ПААСО-1 и ПААСО-2 при T_{er} = 623 К дала значения 103,3 и 67,1 моль О₂/осн. моль полимера, соответственно, что под-тверждает эмпирический подгоночный характер этого параметра в трактовке уравнения (1) [11].

Таким образом, изложенные выше результаты продемонстрировали возможность физически корректного теоретического прогнозирования кинетических кривых $N_{\rm O_2}(t)$ для полимерных расплавов при условии учета как химического строения полимера, так и физической структуры расплава. Последняя может быть количественно идентифицирована в рамках фрактального анализа и теории дробных производных. Полученное для целей прогнозирования кинетических кривых $N_{\rm O_2}(t)$

ческих подгоночных параметров [11].

Список литературы

- 1. Эмануэль Н.М. //Высокомолек. соед. А. 1985. Т. 27. № 7. С. 1347-1363.
- Шляпников Ю.А., Кирюшкин С.Г., Марьин А.П. Антиокислительная стабилизация полимеров. М.: Химия. 1986, 256 с.
- Козлов Г. В., Новиков В. У. Синергетика и фрактальный анализ сетчатых полимеров. М.: Классика. 1998. 112 с.
- 4. Козлов Г.В., Новиков В.У. //Успехи химии. 2000. Т. 69. № 4. С. 378-399.
- 5. Козлов Г.В., Новиков В.У. //Успехи химии. 2000. Т. 69. № 6. С. 572-599.
- Kozlov G.V., Shustov G.B., Zaikov G.E. In book: Chemistry and Biochemistry on the Leading Edge. /Ed. Zaikov G. New York: Nova Science Publishers, Inc. 2002. P. 21-29.
- 7. Kozlov G.V., Shustov G.B., Zaikov G.E. //Oxidation Commun. 2004. V. 27. № 1. P. 217-224.
- Шелгаев В.Н., Шабаев А.С., Микитаев А.К. //Высокомолек. соед. А. 1982. Т. 24. № 11. С. 2315-2321.
- Мейланов Р.П., Свешникова Д.А., Шабанов О.М. //Изв. ВУЗов. Северо-Кавказск. регион. Естеств. науки. 2001. № 1. С. 63-66.
- 10. Rammal R., Toulouse G. //J. Phys. Lett. (Paris). 1983. V. 44. No 1. P. L13-L22.
- Kozlov G.V., Shustov G.B., Zaikov G.E. In book: Physical Chemistry of Low and High Molecular Compounds. /Ed. Zaikov G., Dalinkevich A. New York: Nova Science Publishers, Inc. 2004. P. 65-72.
- 12. Klymko P.W., Kopelman R. //J. Phys. Chem. 1983. V. 87. № 23. P. 4565-4567.

÷