ПОВЕРХНОСТНЫЕ АКУСТИЧЕСКИЕ ВОЛНЫ В ФЕРРОМАГНИТНОЙ ПЛЕНКЕ СПЛАВА ГЕЙСЛЕРА НА ТВЕРДОТЕЛЬНОЙ ПОДЛОЖКЕ

Карпук М. М., Костюк Д. А.*, Кузавко Ю. А.**, Шавров В. Г. ***

Технический университет, Кошалин, Польша

* Брестский государственный технический университет, Брест, Беларусь ** Полесский аграрно-экологический институт НАН Беларуси, Брест, Беларусь *** Институт радиотехники и электроники РАН, Москва

Рассмотрено возникновение поверхностной волны Лява в ферромагнитной пленке сплава Гейслера $Ni_{2*x+y}Mn_{1-x}Ga_{1-y}$ с магнитоуправляемым эффектом памяти формы, расположенной на твердотельной подложке. Для структур (001) Ni_2MnGa -(001) GaAs (Si) исследованы нулевые моды волн Лява. Показано, что при их распространении вдоль оси [110] в плоскости (001) имеет место заметное их смягчение и высокая чувствительность к толщине пленочного покрытия и изменениям упругого модуля $c'=(c_{11}-c_{12})/2$, ответственного за предмартенситные и мартенситные фазовые превращения.

Ферромагнитные сплавы с эффектом памяти формы (ЭПФ) позволяют реализовать большие обратимые деформации за счет перестройки мартенситной структуры доменов (вариантов) в магнитном поле. В ферромагнитных сплавах Гейслера $Ni_{2+x+y}Mn_{1-x}Ga_{1-y}$ температура Кюри T_C может превышать температуру мартенситного фазового превращения (МФП) T_M . Температуры этих ФП близки к комнатной температуре, что открывает возможности практического использования магнитного управления формой и размерами ферромагнетиков в мартенситной фазе. На монокристаллических образцах $Ni_{608}Mn_{24,5}Ga_{21,7}$ и $Ni_{48,5}Mn_{30,3}Ga_{21,2}$ в полях $H \sim 10$ kOe обратимая магнитодеформация составила 6% [1, 2].

<i>T</i> , K	C_{l}	C44	C	C ₁₁	C_{12}	V_l	V 44	V	A
	10 ¹¹ Па					10 ³ м/с			
300	2,50	1,03	0,045	1,52	1,43	5.54	3,56	0,740	23
260	2,43	0,86	0,031	1,59	1,53	5,46	3,26	0,617	28
215	2,48	0,98	0,067	1,61	1,48	5,53	3,47	0,908	15

Таблица. Акустические параметры кристалла Ni₂MnGa. Плотность р = 8,13 10³ Kg/m³

ЭПФ в таких веществах связан с МФП, а влияние магнитного поля на параметры мартенситной фазы обусловлено магнитоупругим взаимодействием. Его специфика заключается в том, что взаимодействующими сторонами выступают большие, скоррелированные между собой ансамбли структурных вариантов и ферромагнитных доменов. В этом плане магнитоупругое взаимодействие в ферромагнетиках с ЭПФ, приводящее к гигантским магнитодеформациям, существенно отличается от магнитострикции, представляющей собой, по сути, одночастичный эффект [3].

Подробное рассмотрение распространения объемных продольной (LA), быстрой (TA₁) и медленной (TA₂) поперечных акустических волн в монокристалле Ni₂MnGa в

184

области МФП $T_{M} \approx 220$ К и предмартенситного (ПМ) ФП $T_{PM} \approx 255$ К выполнено Trivisonno et. al. [4, 5]. В таблице систематизированы данные его экспериментальных исследований, использованные нами в дальнейшем. Zeludev et al [6] в экспериментах по неупругому рассеянию нейтронов в монокристалле Ni, MnGa в области МФП определили дисперсионную зависимость фононной моды [ξξ0] TA2. Эта мода при ξ = 0 соответствует упругой константе $c' = (c_{11} - c_{12})/2$, которая, в свою очередь, определяется скоростью поперечного звука в направлении $\vec{k} \parallel [110]$ с поляризацией $\vec{e} \parallel [1\overline{10}]$. В отличие от LA и [500] TA1 мод дисперсионная зависимость [550] TA2 демонстрирует заметное смягчение при $\xi_0 = 0.33$. Так, для нее скорость $s_{t2} = \sqrt{c'/(2\rho)}$ изменяется от 740 м/с (T = 300 K) до 614 м/с (T_{PM} = 255 K) и 903 м/с (T_M = 215K) при частоте f = 3,7 MHz [5]. В то время как скорость LA $s_i = \sqrt{(c_{11} + c_{12} + 2c_{44})/(2\rho)}$ вдоль $k \parallel [110]$ от температуры практически не зависит. Индуцируемая при ФП анизотропия кристалла A = c44 / c' теоретически обращается в бесконечность. Экспериментально достигнутое при этом значение при ПМ ФП составляет А = 28. Нетривиальная температурная зависимость мягкой фононной моды указывает на то, что в решетке Ni, MnGa задолго до МФІІ развиваются тенденции к образованию микромодулированной сверхструктуры. Электронная микроскопия свидетельствует, что общая кубическая симметрия кристаллической решетки сохраняется в интервале $T_{M} - T_{PM}$, однако в ней возникают модуляции с периодом, равным шести межатомным расстояниям в направлении [220], d ~ 0,2 нм.

На микроскопическом уровне смягчение [$\xi\xi_0$] TA₂ моды означает, что $\vec{k} = [\xi_0\xi_0 0]$ является особым волновым вектором поверхности Ферми, и совпадение этих векторов (нестинг) в электронной и фононной подсистемах металла приводит к усилению электрон-фононного взаимодействия. Приложение внешних напряжений к образцу сопровождается изменением параметров элементарной ячейки и приводит к деформации поверхности Ферми. Нестинг при этом достигается при другом значении волнового вектора, а аномалия на фононной дисперсионной кривой смещается к другому значению ξ [8]. Ультразвуковые измерения демонстрируют, что температурные зависимости упругих модулей качественно подобны температурному ходу фононных мод, обнаруженному в нейтронографических экспериментах. Аналогично, низкое значение c' характерно для многих сплавов, претерпевших МФП [3], и является наряду с твидовой структурой, уширением рефлексов в рентгеновском спектре и мягкой фононной модой, одним из предпереходных явлений.

Исследование влияния одноосного сжатия на T_{PM} в Ni_{49.5}Mn_{25.4}Ga_{20.1} с $T_M = 175$ К и $T_{PM} = 230$ К показало [8], что при приложении нагрузки вдоль кристаллографического направления [110] наблюдались существенные (~ 8 К при 9 МПа) гистерезисные явления при T_{PM} . В отсутствие одноосного сжатия температурный гистерезис вблизи T_{PM} не наблюдался. Появление гистерезисных явлений при ПМФП согласуется с данными о влиянии одноосного напряжения на мягкую [$\xi\xi 0$] TA₂ [7]. Таким образом, приложение внешнего давления приводит к усилению особенностей, характерных для ФП I рода.

Измерения полевых зависимостей упругих констант c_L, c_{44}, c' монокристалла Ni_{49.5}Mn_{25.4}Ga_{25.1} в полях до 10 kOe, приложенных вдоль [001] и [110], показали [8] рост упругих констант и их насыщение в полях ~ 1 kOe при \bar{H} [[001] и ~ 3 kOe при \bar{H} [[110]. Относительные увеличения c_L, c_{44}, c' составляли, соответственно, 0,3%, 1,2%,

и 1,6% при возрастании $\bar{H} \parallel [001]$, а их увеличения – 0,4%, 1,1%, и 1,7% при $\bar{H} \parallel [110]$. Для соответствующих фононных мод затухание несколько уменьшалось, что связано с отсутствием рассеяния фононов на магнитных доменах в полях насыщения [8]. Относительные увеличения скорости ультразвуковых волн, обусловленных модулями c_L, c_4, c' , при приложении напряжения $\sigma_{ii} = 10$ МПа вдоль [001] составили, соответственно, 0.08%, 0.05%, и 0.07%. При этом $T_{\rm PM}$ изменялась при охлаждении на 6 К и при нагревании – на 2 К, когда $\sigma_{ii} = 3$ МПа вдоль [001]. С другой стороны, эти изменения достигали при охлаждении 2 К и при нагревании 6 К, когда $\sigma_{ii} = 9$ МПа вдоль [110]. Можно сделать вывод, что для Ni₁MnGa характерные зависимости $T_{\rm M}$ от внешних факторов (напряжения $\sigma \parallel [001]$, поля) имеют вид прямых с наклоном ~2.5 МПа/К и ~210⁻² K/kOe.

Помимо [4–9], акустические эффекты в монокристаллах Гейслера изучались в работах [17–19]. Так, в [17] экспериментально обнаружено для поликристаллического образца Ni_{2.15}Mn_{0.81}Fe_{0.04}Ga с $T_M = 313$ К и $T_K = 373$ К смещение точки МФП на 1 К при действии на образец ультразвуковых колебаний интенсивности 10 Вт/см². При $T_M = 313$ К $S_1 = 4.91\pm0.08$ км/с, а при T = 373К > $T_K S_1 = 4.62\pm0.08$ км/с, При этом затухание LA при $T_M = 313$ К составило 6 см⁻¹, что сопоставимо с данными по затуханию LA в Ni₂MnGa. Отражение и преломление акустических волн на границе Ni₂MnGa с жидкостью и диэлектриком исследовалось в [18, 19], где было предсказано ряд новых акустических эффектов преобразования типов волн вследствие сильного возрастания акустической анизотропни Ni₂MnGa с приближением к точкам его ФП.

Скорости LA и TA2 в плоскости (001) определяются, согласно выражению

$$s_{1,i}^{2} = \frac{c_{11} + c_{44} \pm \sqrt{(c_{11} - c_{44})^{2} \sin^{2} 2\alpha + (c_{12} + c_{44})^{2} \cos^{2} 2\alpha}}{2\rho}$$

где знак «+» соответствует LA, а знак «-» – TA₂. Распространяющаяся в этой же плоскости TA₁ со скоростью $s_{44} = \sqrt{c_{44}/\rho}$ и поляризацией $\bar{e} \parallel [001]$ не связана с LA и TA₂ ни дисперсионным уравнением, ни граничными условиями. Скорости LA и TA₂ в низкосимметричной тетрагональной мартенситной фазе определяются теми же соотношениями при замене $c_{44} \rightarrow c_{66}$.

В последнее время заметно возрос интерес к ферромагнитным пленкам сплава Гейслера, получаемым различными способами на массивных подложках. Впервые исследовались поликристаллические ленты из этого материала [9] толщиной 40 мкм и шириной 5,4 мм, средние размеры зерен которой составляли 10х10х50 мкм³. Отмечалось, что длинная ось для зерен была примерно в сто раз короче, чем для объемных образцов. Уже это обусловило сдвиг появления мартенситной фазы M_s в области низких температур на 50 К, что составило $M_s = 231$ К с гистерезисом 20 К. Обратимые деформации составили примерно 1 %. Заметим, что для лучшего магнитострикционного материала Terfenol-3D достигаемые деформации в магнитном поле не превышают 0,18%. В рассматриваемом нами диапазоне частот (1–100 МГц), согласно экспериментальным результатам Тривисонно [14, 15], при подходе к точке ПМ ФІІ изменения скорости продольной, быстрой и медленной поперечных акустических волн, распространяющихся вдоль [110], составляли, соответственно, 1,8 %; 8 % и 18 %. Отметим также, что при подходе к точке M ФП скорость медленной TA₂ возрастает на 20% по сравнению с ее значением вдали от точек ФІІ.

186

В работе [10] были получены и изучены магнитные свойства 5 мкм поликристаллических пленок, получаемых методом магнетронного напыления из мишеней состава Ni_2MnGa и $Ni_{2,17}MnGa$ на PVA подложку. Отмечался отличный от использованных мишеней их стехиометрический состав, значения намагничености и восприимчивости. Средний размер зерен пленок, получаемых на стеклянной подложке, был 30 и 100 нм, соответственно, при $T_s = 323$ К и $T_r = 573$ К. Первые кристаллические пленки 30 нм (001) Ni_2MnGa на подложке (001) GaAs были получены Dong et al [11] методом молекулярно-лучевой эпитаксии. Посредством вибрационной магнитометрии и сверхпроводящего квантового интерферометра было показано, что намагниченность Ni_2MnGa пленки ориентирована в ее плоскости. Температура Кюри $T_k \approx 320$ K была меньше $T_K \approx 376$ K объемного образца. Позднее [12] тем же способом были получены пленки 90 нм, для которых была изучена температурная зависимость намагниченности и визуализирована полосовая доменная структура с шириной доменов ~500 нм. Поликристаллические (001) Si подложке [13].

Гигантские магнитодеформации, достигаемые в пленках Ni-Mn-Ga, стимулируют их использование как компонент микроэлектромеханических систем [14] (сканирующих систем, сенсорных графических дисплеев, переключателей и т.д.), но к настоящему времени такие исследования находятся в начальной стадии. Получена разрозненная информация о их синтезе, измерялись лишь их структурные и магнитные характеристики [15]. Механические и акустические свойства пленок не исследовались вообще, несмотря на то, что величина обратимых магнитодеформаций, упругость и пластичность являются важнейшими характеристиками их практического использования.

Неучет спиновой системы в явном виде при таком рассмотрении оправдан для частот $\omega << \omega_m + \omega_{me}$, где ω_m, ω_{me} – соответственно, магнитная и магнитоупругая щель в спектре спиновых волн [19, 20]. Обычно в магнитных кристаллах $\omega_m >> \omega_{me}$, и лишь в точке ориентационного ФП магнитная щель обращается в ноль. Отметим, что МСФП является ФП 1-го рода и обусловлен упругим ангармонизмом второго и третьего порядков, определяющим затухание звуковых волн и их нелинейные взаимодействия. Вклад в перенормировку упругих модулей от ангармонизма учитывается использованием приближения $c' = \alpha (T - T_{RM})$, удовлетворительно описывающим в области ФП экспериментально наблюдаемое поведение скорости TA₂.

Рассмотрим пленку (001) Ni₂MnGa на подложке (001) кубического кристалла (GaAs,Si). В такой структуре объемная TA₂ с $\vec{k} = [110]$ удовлетворяет граничным условиям и не связана с LA и TA₁. Последние две волны вследствие граничных условий образуют волну Рэлея или волну Стоунли, слабо подверженные влиянию данного ФП [20]. Выберем оси системы координат по направлениям кристаллографических осей $\vec{e}_x = (110)$, $\vec{e}_y = (110)$, $\vec{e}_z = (001)$, т.е. нормально к свободной поверхности пленки. В такой системе пленка на подложке TA₂ преобразовывается в волну Лява [20]. Решая граничную задачу, получаем выражения для упругих смещений волны Лява:

$$u_{y} \sim \left[\cos(\alpha kz) - \frac{\mu_{p}\beta}{\mu\alpha} \sin(\alpha kz) \right] e^{i(kz-\omega t)},$$
$$u_{yp} \sim e^{-\beta kz + i(kz-\omega t)},$$

где $\alpha = \sqrt{s^2 / s_{l2}^2 - 1}$, $\beta = \sqrt{1 - s^2 / s_{l2p}^2}$, *s* - скорость ВЛ, μ, μ_p - соответствующие сдвиговые модули для пленки и подложки. Условие существования волны Лява $s_{2l} < s < s_{2p}$ считаем выполненным.

187

Дисперсионное уравнение запишется следующим образом:

$$tg(\alpha kH) = \frac{\mu_p \beta}{\mu \alpha},$$

где *H* – толщина пленки. Численно рассчитывалась нулевая мода ВЛ, представляющая наибольший практический интерес и сравнительно легко наблюдаемая. На рис. 1, 2 представлены частотные зависимости волны для толщин пленок 30, 90, 1000 нм для ферромагнитного (1), предмартенситного (2) и мартенситного (3) состояния.

Рис. 1. Зависимости s/s_{r_2} от ω для ВЛ в системе пленка Ni₂MnGa на подложке GaAs. $1 - T = 300 \text{ K}; 2 - T_{PM} = 255 \text{ K}; 3 - T_M = 215 \text{ K}$

Рис. 2. Зависимости s/s_{t2} от ω для ВЛ в системе пленка Ni₂MnGa на подложке Si. 1 – T = 300 K; 2 – $T_{PM} = 255$ K; 3 – $T_M = 215$ K.

188

Авторы благодарны за финансовую поддержку РФФИ и БРФФИ (гранты 04-02-81058, 05-08-50341 и ТО6М-227), ГКПНИ «Нанотех» (задание 3.15), а также Совету по грантам Президента РФ для поддержки ведущих научных школ (НШ-8269.2006.2).

Список литературы

- Murray S.J. et al. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. // Appl. Phys. Lett. V. 77, N 6. 2000. P. 886 - 888.
- Васильев А.Н., Бучельников В.Д., Такаги Т., Ховайло В.В., Эстрин Э.И Ферромагнетики с памятью формы. // УФН. Т. 173, №6. 2003. С. 577-608.
- Worgull J., Petti E., Trivisonno J. Behavior of the elastic properties near an intermediate phase transition in Ni₂MnGa. // Phys. Rev. B. V. 54, N. 22. 1996.
 P. 15695 - 15699.
- Stenger T.E., Trivisonno J. Ultrasonic study of the two-step martensitic phase transformation in Ni₂MnGa. // Phys. Rev. B. V. 57, N 5. 1998. P. 2735 - 2744.
- Gonza'lez-Comas A. et al. Premartensitic and martensitic phase transitions in ferromagnetic Ni₂MnGa. Phys. Rev. B. V. 60, N 10. 1999. P. 7085 – 7090.
- Suzuki M., Ohtsuka M. et al. Fabrication and characterization of sputtered Ni₂MnGa thin films. // Mater. Trans. JIM. V. 40, N10. 1999. P. 1174 – 1177.
- Dong J. W. et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni₂MnGa on (001) GaAs. // Appl. Phys. Lett. V. 77, N 10, 1999. P. 1443 – 1445.
- Pan Qi, Dong J. W. et al. Magnetic domain observations of freestanding single crystal patterned Ni₂MnGa films. // Journ. of Appl. Phys. V. 91, N 10, 2002. P. 7812 - 7814.
- Tello P.G., Castaño F.J. et al. Ni-Mn-Ga thin films produced by pulsed laser deposition. // Journ. of Appl. Phys. V. 91, N 10, 2002. P. 8234 – 8236.
- Wuttig M. et al. Phase transformations in ferromagnetic NiMnGa shape memory films. // Mater. Trans. JIM. V. 41, N 8. 2003. P. 933 - 937.
- Buchelnikov V.D., Kuzavko Yu.A., Shavrov V.G. et al. Ultrasound induced martensitic transition in ferromagnetic Ni_{2.15}Mn_{0.81}Fe_{0.04}Ga shape memory alloy. // JMMM. V. 272 - 276. 2004. P. 2025-2027.
- Карпук М.М., Костюк Д.А., Кузавко Ю.А., Шавров В.Г. Особенности распространения акустических волн через границу жидкость - ферромагнитный сплав Гейслера. // Акустич. журн. Т. 51, N 5. 2005. С. 665 – 673.
- Костюк Д.А., Кузавко Ю.А., Шавров В.Г. Отражение и преломление акустических волн на границе ферромагнитный сплав Гейслера-диолектрик. //ФММ. Т. 101, N 6. 2006. С. 575-588.
- 14. Викторов И.А. Звуковые поверхностные волны в твердых телах. М.: Наука, 1981. 286 с.

УДК 539.4.019.3

ЭЛЕКТРОПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ АЛЮМИНИЕВОЙ ПРОВОЛОКИ

Савенко В. С., Шаврей С. Д.

УО «Мозырский государственный педагогический университет им. И.П. Шамякина», Мозырь, Беларусь savenko-vl@rambler.ru

Обработка металлов давлением имеет широкое применение в промышленности и основана на использовании характерного для металлов свойства пластичности. Пластичность материала является одной из важнейших характеристик при изготовлении проволок из меди, алюминия, вольфрама. Высокие внутренние напряжения и локализа-