Таблица 4. Физико-механические характеристики свойств глиноземистого и модифицированного цементов

	Глиноземистый цемент, затворенный водой В/Ц=0,5								
	Водо- поглощение %	р г/см ³	Предел прочности (кГс/см²)						
№			При изгибе	При с	жатии				
n/n			В возрасте (сут.)						
			3	3	28				
1	4,85	2,01		44					
2	6	1,93	31,9	41,3	196				
3	6,75	1,91		41,3					
	Портландц	емент, затворе	нный раствором колл	оидного АІ(ОН	I) ₃				
1	2,7	2,16		70					
2	2,65	2,2	40,7	86	236,35				
3	2,67	2,19		80					

Таким образом, использование коллоидного гидроксида алюминия в качестве модифицирующей добавки для портландцемента обеспечивает получение бетонов с физико-механическими параметрами, соответствующими характеристикам бетонов, полученных на глиноземистом цементе, но при этом упрощается технология и снижается себестоимость цементных бетонов в целом.

Список литературы

- Малинина Л.А., Батраков В.Г.. Бетоноведение: настоящее и будущее.// Ж. Бетон и железобетон, №1. -2003г.- С.2-6.
- 2. Бутт Ю.М., Сычев М.М., Тимащев В.В. Химическая технология вяжущих материалов. М.: «Высшая школа».-1980г.-С.470.
- Левчук Н.В. Модифицирование портландцементных систем коллоидальным гидроксидом алюминия. Канд. диссертация 2006г. - с.130.
- Хигерович М.И., Меркин А.П. Физико-химические и физические методы исследования строительных материалов. М: «Высшая школа», 1968г. - С.190.

УДК 666.97:546

К ВОПРОСУ ЭЛЕКТРОХИМИЧЕСКОЙ АКТИВАЦИИ ВОДЫ ДЛЯ ПЕМЕНТНЫХ БЕТОНОВ

Плосконосов В. Н., Левчук Н. В.

Брестский государственный технический университет, Брест, Беларусь

Качество бетона, его физико-механические и эксплуатационные характеристики, в значительной степени, определяются его активными компонентами – цемента и воды. Вода с цементом активно участвует в процессах структурообразования цементного геля и особенно – в начальной стадии формирования коагуляционной структуры.

Известно, что вода является весьма неоднородной жидкостью. Согласно полимеризационной теории, молекула воды существует в различной форме: в форме гидроля, дигидроля и тригидроля, количественное соотношение которых зависит от температуры и электрического поля среды. Структура обычной воды является более рыхлой, и

вследствие дипольного момента молекулы воды расположены в виде тетраэдров [1]. Дипольный момент является важной характеристикой молекулы воды, определяющей способность взаимодействовать с активной поверхностью твердого тела.

Водородные связи обуславливают силу сцепления с поверхностью твердого тела, силу поверхностного натяжения и способность разрушать кристаллическую решетку, а также определять процессы гидролиза и растворение минералов цементного клинкера.

Известно [2], что в начальный период формирования структуры твердого вяжущего существенную роль играет электростатическое взаимодействие и поляризация воды затворения, которая усиливается при введении в нее различных солей электролитов, что, в конечном счете, сказывается на кинетике схватывания и скорости твердения бетона в целом. Особенно это влияние проявляется при введении многозарядных катионов с малыми радиусами, которые активно влияют на поляризацию молекул воды и на интенсивность адгезионных процессов.

Исходя из вышесказанного, можно предположить, что поляризация воды может быть обеспечена не только влиянием силовых полей присутствующих в ней растворенных ионов добавок – электролитов, но и внешним электрическим полем.

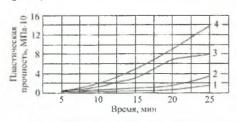
Вероятно, если внешнее электрическое поле усиливает силу связи в гидрате, то оно должно упорядочивать структуру, как воды, так и раствора вяжущих бетонов. Воздействие на воду внешнего электрического поля, очевидно, приводит к усилению ориентации полярных групп растворенных в воде электролитов, к повышению плотности воды вследствие разрыва водородных связей в ди- и тригидрольных агрегатах воды, к разрушению тетраидных структур воды с преобладанием в ней гидрольных молекул.

Наличие в жидкой фазе ионов, например, гидроксида алюминия в различной форме [3] при воздействии на раствор внешнего электрического поля должно способствовать увеличению сил связи в гидрате и должно сокращать индукционный период минералов портландцементного клинкера, ускорять реакции гидратации цемента в начальный период химической реакции. Затворение цементного бетона предварительно обработанной во внешнем электрическом поле воды с ионами гидроксида алюминия должно повысить степень уплотнения гидросиликатов и прочность цементного камня в целом. Необходимо отметить, что в электрическом поле помимо усиления ориентации полярных групп и частиц с дипольной структурой можно также ожидать индуцирование полярности. Все это должно способствовать и сокращению сроков схватывания, ускорению формирования и упрочнению структуры цементного камня и, прежде всего, на ранних стадиях твердения, ускорению набора прочности бетона.

Наличие в жидкой фазе примесей в виде гидроксида алюминия уменьшает работу образования двухмерных зародышей и увеличивает скорость роста кристаллов гидросиликатов цементного камня.

Для обоснования теоретических положений был выполнен комплекс экспериментальных исследований по предварительной электрохимической модификации воды затворения портландцемента.

Лабораторная установка по обработке воды в поле постоянного электрического тока состоит из электролизера с пакетом пластинчатых алюминиевых электродов; рНметра и выпрямителя. Пропуская постоянный ток силой 2−5 А в течение 5−15 минут через электролизер, получают раствор коллондного гидроксида алюминия с концентрацией 0,006−0,012 г-экв/л.


Концентрация $Al(OH)_3$, равная 0,012 г-экв/л является предельной, обеспечивающей агрегативную устойчивость коллоидного раствора. Гидроксид алюминия после электрообработки в воде находится в виде коллоидного раствора, мицелла золя которого отвечает составу {[(Al(OH)₃)_m $nAlO_2$ -] nH^+ }.

Исследования выполнялись на цементе завода «Красносельский» ОАО активностью 43,2мПа, с минералогическим составом, приведенным в табл. 1.

Таблица 1. Минералогический состав цемента (%)

Вид цемента, завод	Co	став клинкеј	Прочие добавки			
изготовитель	C ₃ S	C ₂ S	C ₃ F	C ₄ AF	Гипс	Трепел
Портландцемент ПЦ 500-ДО ОАО «Красносельский»	56-57	20-22	5-7	16	3	10

Исследованиями установлено, что электрохимическая обработка воды затворения цемента и присутствие в ней коллоидного Al(OH)₃ существенно ускоряет его схватывание, на что указывает изменение во времени пластической прочности цементного теста (рис. 1).

Рис.1.

- 1 цементное тесто без добавок, при водоцементном отношении 0.3:
- 2 цементное тесто, модифицированное коллоидным гидроксидом алюминия, при водоцементном отношении 0.3:
- 3 цементное тесто без добавок, при во-
- 4 цементное тесто, модифицированное коллоидным гидроксидом

Предварительная перед затворением обработка в электрическом поле воды, содержащей коллоидный гидроксид алюминия, почти в два раза увеличивает степень гидратации цемента (табл. 2).

Таблица 2. Влияние концентрации коллоидного гидроксида алюминия, обработанного в электрическом поле волы на степень гидратации цемента

Концентрация кол-		Время гидратации (сут.)	
лоидного раствора Al(OH) ₃ г-экв/л	3	7	28
0	39,25	44,6	45,8
0,003	47,3	59,10	61,4
0,016	53,09	68,90	72,7
0,012	56,07	83,00	87,3

Существенное ускорение схватывния цементного теста электрохимически обработанной водой, скорости его гидратации, в конечном счете, предопределяет и повышение прочности бетона, плотности его структуры (табл. 3).

Таблица 3. Влияние модификатора, содержащегося в воде, обработанной электрическим полем, на некоторые физико-механические свойства бетона

Конценграция коллоидного		и бетона в возрасте ок, МПа	Водопоглощение,	Общая порис-	
раствора Al(OH) _{3.} г-экв/л	При изгибе	При сжатии	%	тость, %	
0	3,6	11,10	3,5	10,00	
0,003	4,10	12,65	2,7	9,10	
0,006	4,55	14,00	2,4	6,4	
0,012	5,18	16,01	2,1	5,3	

Таким образом, обобщая результаты выполненных исследований, можно сделать вывод о том, что одним из эффективных методов повышения качества бетона является электрохимическая активация воды, а присутствие в ней химически активного коллонидного гидроксида алюминия, ускоряет процессы гидратации и стуктурообразования цементного камня и повышает качество бетона.

Список литературы

- 1. Ахвердов И.Н. Основы физики бетона. М.: Стройиздат, 1981, 464с.
- 2. Сычев М.М. Твердение вяжущих веществ. Л.: Стройиздат, 1974, 80с
- 3. Левчук Н.В., Добрунова В.М. Теоретические аспекты влияния коллоидного гидроксида алюминия на процессы гидратации портландцемента./ Вестник БрГТУ, №1, «Строительство и архитектура» / Брест, 2002, с 43-44.

ВЛИЯНИЕ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ НА СТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА КОРРОЗИОПНО-СТОЙКИХ СПЛАВОВ СИСТЕМЫ ЛЕГИРОВАНИЯ Fe-Cr-Ni

Еланцева Е. В., Беликов С. В.

Уральский государственный технический университет, г. Екатеринбург, tofm@mail.ustu.ru

Коррозионно-стойкие высокопрочные сплавы системы легирования Fe—Cr—Ni применяются для изготовления деталей, используемых для обустройства скважин нефтяных и газовых месторождений. Определяющим фактором использования данного сплава является коррозионная стойкость, в частности, стойкость к сероводородному растрескиванию, к питтинговой, щелевой и межкристаллитной коррозии, поскольку рабочие среды содержат влагу, сероводород, углекислый газ, ионы хлора [1]. Освоение глубинных скважин требует материалов с высоким уровнем прочности, что подразумевает предел текучести $\sigma_{0,2} = 758...895$ МПа, и достаточно высокие пластические свойства. Достижение такого уровня механических свойств возможно путем проведения деформационно-термической обработки.

Целью данной работы является разработка режимов деформационно-термической обработки, которые позволят получить удовлетворительные механические свойства.

Материалом для исследований служили образцы, отобранные от трубной заготовки из сплавов системы легирования Fe-Cr-Ni (хим. состав приведен в табл. 1). Для металлографического исследования использовался оптический микроскоп Neophot-2, растровую электронную микроскопию осуществляли на приборе Philips SEM 535 при ускорении $U=30~{\rm kB}$ с микроанализатором EDAX Genesis 2000, просвечивающую электронную микроскопию проводили с помощью микроскопа JEM-200 CX.

Таблица 1. Химический состав сплавов

№ сплава	С	Si	Mn	P	S	Cu	Ni	Cr	Мо	Ti	Al	٧	Со	Nb
1	0,02	0,11	1,48	0,007	0,005	1,0	29,48	28,46	3,06	0,02	0,04	0,03	0,02	0,1
2	0,02	0,28	0,58	0,02	0,001	0,76	31,26	25,35	3,21	-	-	-	-	-
3	0,01	0,45	1,7	0,02	0,001	0,9	30,4	26,4	3,3	-	0,07	-	-	-
4	0,01	0,36	0,69	0,01	0,003	1,54	38,95	22,54	3,14	0,74	0,007	0,04	0,07	0,06