- 3. Кирюшкин С.Г., Ковалев И.Б., Панченков Г.М., Чеботаревский А.Э., Шляпников Ю.А. Подбор антиоксидантов для системы полимер+металл // Пластические массы. – 1982. – №5.– С. 55-56.
- 4. Lin D.G. and Vorobieva E.V. On Increasing the Efficiency of amine Antioxidant // Journal of Applied Polymer Science. - 2005. - Vol. 98., Issue 1. - P. 401-406.
- 5. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И. Химическая кинетика.-- М.: Вите будк 677.4 Ский Химия, 2000.- 568 с.

ИССЛЕДОВАНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ТЕПЛОЗАШИТНЫХ МАТЕРИАЛОВ

В.И. Стельмашенко, Т.А. Пономарева, О.Г. Мухамеджанова

Московский государственный университет сервиса

За последние десять лет на российском рынке значительно расширился ассортимент теплозащитных материалов за счет более широкого применения объемных нетканых полотен, как отечественных, так и зарубежных производителей. В теплозащитной одежде утепляющая прокладка наряду с высоким тепловым сопротивлением должна обладать небольшой массой, высокими упругими свойствами и отвечать гигиеническим требованиям.

Благодаря высокой упругости утепляющие прокладки не изменяют теплозащитных свойств эксплуатации. В данной работе упругость определялась при сжатии в зависимости от величины давления, времени действия усилия и времени отдыха.

В качестве объектов исследования были выбраны пять вариантов теплозащитных материалов, различных по толщине, поверхностной плотности и сырьевому составу. Их характеристика приведена в таблице 1.

Таблица 1 - Объекты исследования

Наименова- ние образца	Толщина, мм	Поверхностная плотность, г/м	Сырьевой состав	Производи- тель
Арктик	0,6	250	100% ПЭ Легкоплавкие волокна	ЗАО Легкопром
Тинсулейт	0,7	100	Полиолефин 65%, полиэфир 35%	«ЗМ» (США)
Синтепон	0,8	200	100 % ПЭ	г. Нижний Новгород
Файбертек	2,7	250	100 % ПЭ с силиконовой обработкой волокна	республика Беларусь г. Минск
Дюрафил	1,9	300	100 % ПЭ с акриловым связующим	г. Нижний Новгород

В результате исследований выявлено, что все образцы утепляющих материалов обладают высокими упругими свойствами при сжатии.

Коэффициент воздухопроницаемости составляет от 25 до 35 дм³/м²с при перепаде давлений 50 Па.

ВИТЕБСК 2006 188

Показатель суммарного теплового сопротивления определяли по ГОСТ 20489 - 75 ПТС-225. Ниже приведены показатели суммарного теплового на приборе сопротивления.

Варианты утеплителей	Суммарное тепловое сопротивление,м² К/Вт	
Арктик	0,236	
Тинсулейт	0,250	
Синтепон	0,257	
Файбертек	0,330	
Дюрафил	0,331	

BATEGO Из приведенных данных видим. Что наибольшим суммарным тепловым сопротивлением обладает Файбертек и Дюрафил, однако эти образцы обладают большой толщиной и высокой поверхностной плотностью, что соответственно приведет к увеличению толщины швейного изделия и его массы.

Для сравнения утеплителей по теплоизолирующей способности показатель суммарного теплового сопротивления был пересчитан на величину поверхностной плотности равной 100 г/м². Это позволило расположить исследованные утеплители по степени снижения суммарного теплового сопротивления следующим образом:

Тинсулейт	США фирма 3М
Файбертек	Республика Беларусь
Синтепон	Россия, Нижний Новгород
Дюрафил	Россия, Нижний Новгород
Арктик	Россия, ЗАО Легпром

Таким образом, все исследованные утеплители при эксплуатации швейных изделий способны сохранить теплоизоляционные свойства благодаря высокой упругости. С целью снижения массы швейного изделия и обеспечения высоких теплозащитных свойств предпочтение следует отдать утеплителю Тинсулейт.

УЛК 677.4

ВЛИЯНИЕ СТРУКТУРЫ ГЕОТЕКСТИЛЬНЫХ НЕТКАНЫХ материалов на прочностные характеристики при пропавливании шариком

> Ю.В. Назарова, Ю.Я. Тюменев, Г.К. Мухамеджанов, С.В. Плеханова

Московский государственный университет сервиса, ОАО НИИ Нетканых материалов, Серпухов, Россия, Московский государственный текстильный университет им. А.Н. Косыгина

4Bepcurer В последнее время нетканые материалы становятся всё более востребованными во многих отраслях народного хозяйства. Разнообразные и уникальные свойства этих материалов позволяют применять их в различных сферах деятельности и как материалы производственно-технического назначения использовать «технический текстиль».