УДК. 687.016:658.011.56

РАЗРАБОТКА ТЕОРЕТИЧЕСКОЙ МОДЕЛИ НАТЯЖЕНИЯ ТКАНИ В КРЫЛЕ КОСТЮМА ДЛЯ ПАРАШЮТНЫХ ВИДОВ СПОРТА

Корнилович А.В., ст. преп.

Ивановский государственный политехнический университет (ИВГПУ), г. Иваново, Российская Федерация

Костюм для парашютных видов спорта (wingsuit) – наиболее сложный и наименее изученный вид специальной спортивной одежды. Конструктивной особенностью костюма, используемого в экстремальных условиях эксплуатации - в воздушной среде, является наличие трех двухслойных крыльев, наполняемых под давлением через воздухозаборники набегающим потоком (ram-air) и приобретающих особую, необходимую для увеличения подъемной силы, аэродинамическую форму. Однако влияние конструктивного устройства костюма на его аэродинамическое качество в воздушной среде до сих пор не формализовано.

Крыло wingsuit работает только под напором встречного потока воздуха при полете спортсмена, что позволяет отнести его к классу мягких надувных оболочек.

При анализе открытых литературных источников по теории крыла wingsuit было выявлено, что в них не содержится информация о каких-либо исследованиях в данной области, поэтому разработки с использованием методов теории мягких оболочек, представленные автором, являются актуальными и перспективными.

Объектом исследований в данной работе является крыло костюма для парашютных видов спорта в статическом и динамическом состояниях.

В крыле костюма был выделен сегмент 1, расположенный между параллельными элементами (нервюрами) 2 (рис.1), соединяющими нижнюю 3 и верхнюю 4 детали крыла, и рассмотрены условия его пространственного равновесия.

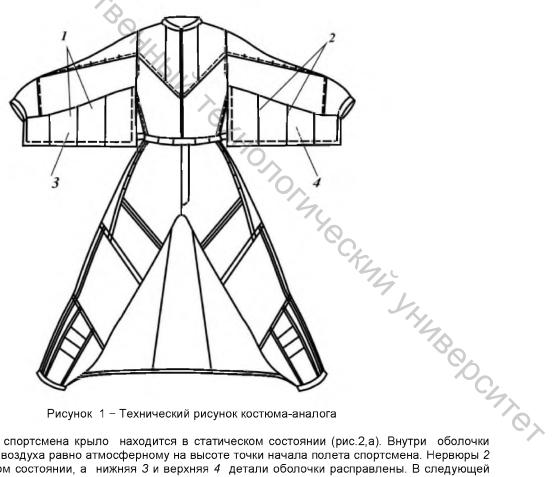
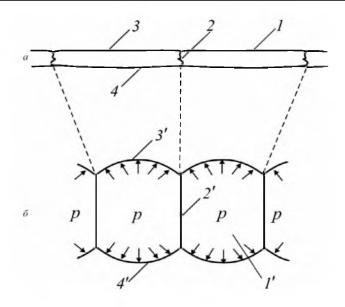



Рисунок 1 - Технический рисунок костюма-аналога

До начала полета спортсмена крыло находится в статическом состоянии (рис.2,а). Внутри оболочки сегмента 1 давление воздуха равно атмосферному на высоте точки начала полета спортсмена. Нервюры 2 находятся в сложенном состоянии, а нижняя 3 и верхняя 4 детали оболочки расправлены. В следующей фазе полета под действием скоростного напора воздуха давление внутри сегмента крыла нарастает до тех пор, пока избыточное давление не станет равным динамическому давлению p (рис.2,б). нервюры 2' расправляются, нижняя 3 и верхняя 4 оболочки сегмента приобретают выпуклую форму, при этом расстояние между нервюрами уменьшается.

BUTO CKAMA C Рисунок 2 - Схема поперечного сечения сегментов крыла в статическом (а) и динамическом (б) состояниях

На рис.З изображена геометрическая модель фрагмента сегмента крыла в динамическом состоянии. При моделировании принималось, что ткань обладает воздухонепроницаемостью, идеальной гибкостью и невесома.

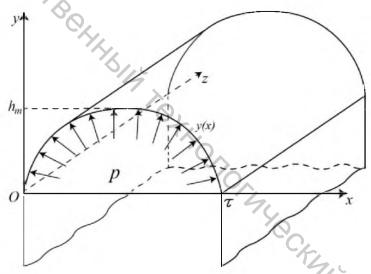


Рисунок 3 - Схема фрагмента оболочки сегмента крыла в динамическом состоянии: $p=0.5
ho_a \, v^2$ - динамическое давление; v - скорость спортсмена; - ho_a плотность воздуха; au - длина основания сегмента, h_m – высота сегмента

Под напором воздуха в продольном сечении сегмента крыла действует натяжение Р [Н/м]. С целью определения натяжения сегмента крыла и вывода уравнения линии его контура проведено моделирование динамического состояния сегмента, находящегося под напором воздуха при свободном парении спортсмена[1].

На основании законов механики [2-4] выведена следующая система уравнений, моделирующих динамическое состояние сегмента крыла и связывающих величину натяжения в сегменте крыла P(x) с зависимостью *y(x)*:

$$P'(x)\{1 - 0.5[y'(x)]^2\} - P(x)[y'(x)]^2y''(x) - py'(x) = 0; y'(x)y''(x)\{1 - 1.5[y'(x)]^2\} + P'(x)y'(x)\{1 - 0.5[y'(x)]^2\} + p = 0.$$
 (1)

Из (1) следует, что дифференциальное уравнение, задающее линию контура сегмента крыла, имеет вид: $y'''(x) - 3(y''(x))^2 y'(x) = 0.$ (2)

Граничные условия для решения уравнения (2):

$$y(0) = y(\tau) = 0; \ y'(0) = y_0; \ y'(\tau) = -y_0; \ y(0.5\tau) = h_m. \tag{3}$$

Получено промежуточное решение уравнения (2)
$$\frac{dy}{dx} = \pm \left\{ -\frac{2}{3} \ln(C_2 + 2C_1 y(x)) \right\}^{0.5}, \tag{4}$$

ВИТЕБСК 2014 173 где $0 < C_2 + 2C_1y(x) \le 1$; C_1 и C_2 – постоянные.

Знак плюс перед корнем в (4) соответствует восходящей линии контура сегмента крыла ($0 \le x < 0$, 5τ), а знак минус - нисходящей линии этого контура ($0.5 \tau < x \le \tau$).

Показано, что решением (4) является зависимость y = y(x), когда константы C_1 и C_2 определяются по следующим формулам:

$$C_1 = \frac{1 - exp(-1.5(y_0')^2)}{2h_m}; \qquad C_2 = exp(-1.5(y_0')^2), \tag{5}$$

а величина y_0' - путем решения нелинейного уравнения

$$\int_{0}^{h_{m}} \left\{ -\frac{2}{3} \ln \left[\frac{y + exp(-1.5(y'_{0})^{2})(h_{m} - y)}{h_{m}} \right] \right\}^{-0.5} dy = 0.5\tau.$$
 (6)

Доказано, что натяжение, испытываемое тканью сегмента при полете спортсмена, определяется соотношением

$$P = \frac{p[1 + 1.5(y')^2]}{|y''|}.$$
 (7)

На основе законов механики разработана математическая модель напряженного состояния сегмента крыла. Полученная модель представляет собой два дифференциальных уравнения, связывающих координату линии контура сегмента крыла с величиной натяжения в его оболочке. Разработана математическая модель для расчета натяжения ткани в сегменте крыла.

Предложенные математические модели были использованы для прогнозирования надежности и безопасности костюма при эксплуатации, а также оптимизации конструктивных параметров крыла wingsuit с целью повышения резерва его аэродинамических свойств.

Список использованных источников

- 1. Корнилович, А.В. Гибридное моделирование как инструмент для оптимизации конструктивных параметров крыла костюма wingsuit / А.В. Корнилович // Фундаментальные исследования. 2013. № 10 (часть 1). стр. 30-34; URL: www.rae.ru/fs/?section=content&op=show_article&article_id=10001419 (дата публикации: 1.08.2013).
- 2. Мигушов, И.И. Механика текстильной нити и ткани / И.И. Мигушов. М.: Легкая индустрия, 1980. 160 с
- 3. Меркин, Д.Р. Введение в механику гибкой нити / Д.Р. Меркин. М.: Наука, 1980. 240 с.
- 4. Федосеев, Г.Н. Прикладная механика нити, ткани и трикотажа / Г.Н. Федосеев. Витебск: ВГТУ, 2009. 58 с.

УДК 685.3:620.1

ЭКСПРЕСС-УСТРОЙСТВО ДЛЯ КОНТРОЛЯ И ОЦЕНКИ КАЧЕСТВА МАТЕРИАЛОВ И СИСТЕМ МАТЕРИАЛОВ ДЛЯ ВЕРХА ОБУВИ

Котин И.М., ст. преп.,

ВФ УО ФПБ «Международный университет «МИТСО»,

г. Витебск, Республика Беларусь

Скачкова О.Г., ст. преп.,

ВП «МОИУП», г. Витебск, Республика Беларусь

Основными свойствами обувных изделий из натуральной кожи в процессе производства и эксплуатации являются деформационно-прочностные свойства. Они определяют как функциональные показатели обуви, так и эстетические, поэтому непосредственно влияют на качество изделия. Недостаточное исследование деформационно-прочностных свойств материалов для верха обуви в процессе входного контроля является одной из причин снижения качества готовой обуви. Это также приводит к возникновению брака уже на отдельных стадиях технологического процесса производства.

Известно, что при формовании верха обуви и в процессе носки изделие подвергается сложной деформации с преобладанием двухосного растяжения. Отечественные стандарты для оценки свойств материалов верха обуви при двухосной деформации предусматривают использование разрывной машины со специальным приспособлением [1], а также прибора ПОИК [2]. Однако данные виды исследований на отечественных обувных предприятиях практически не производят, т.к. большинство предприятий не имеют достаточной базы для проведения испытаний. К тому же стационарное оборудование, применяемое в стандартных методиках, делает невозможным проведение исследований непосредственно на отдельных стадиях технологического процесса, а также снижает оперативность контроля качества.

Областью применения предлагаемого экспресс-устройства являются входной и текущий контроль и оценка качества материалов, а именно: определение прочности материалов, систем материалов для верха обуви и прочности лицевого слоя при продавливании шариком, сферой, а также пуансонами различной формы, имитирующей носочную часть обуви.