

Рисунок 2 - Модели детской одежды из коллекции «Осторожно – дети!»

Таким образом, практикой проверено, что применение термотрансферной технологии открывает новые возможности при изготовлении детской одежды и позволяет в короткие сроки создать оригинальные и эксклюзивные изделия из недорогих материалов, отвечающие запросам потребителей.

УДК 687.02

РАЗРАБОТКА АРМ ТЕХНОЛОГА С ЦЕЛЬЮ ОПТИМИЗАЦИИ ДЛИТЕЛЬНОСТИ ПРОИЗВОДСТВЕННОГО ЦИКЛА ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Н.С. Мокеева, Л.Н. Бакановская Новосибирский технологический институт Московского государственного университета дизайна и технологии (филиал), г. Новосибирск, Российская Федерация

В качестве критерия оптимизации технологического процесса целесообразно выбрать выполнение всего комплекса конструкторско-технологических работ экспериментального цеха.

Для совершенствования работ инженера-технолога [1] авторами разработан и создан программный комплекс, который представляет собой автоматизированное рабочее место (APM) технолога.

Информационным обеспечением программного комплекса является база данных (БД), которая вместе с системой методов и средств, предназначенных для централизованного накопления, хранения, обновления, поиска и выдачи информации пользователю в процессе проектирования является одним из видов представления описаний объектов и технологического процесса изготовления швейных изделий (ТПШИ). Структура БД разработанного программного комплекса представлена на рис.1.

Разработанный авторами программный комплекс реализован в программной среде системы управления базами данных (СУБД) Microsoft Access.

288 Витебск 2009

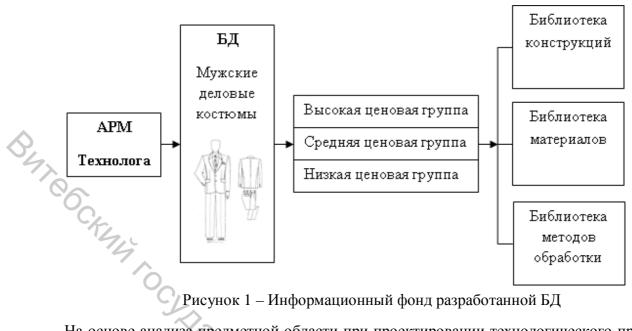


Рисунок 1 – Информационный фонд разработанной БД

На основе анализа предметной области при проектировании технологического процесса изготовления швейных изделий для разных ценовых групп выделяют следующие составляющие информационного обеспечения АРМ технолога:

- Справочники объектов (моделей, методов обработки, операций);
- Модуль формирования пакета материалов;
- Модуль выбора методов обработки;
- Модуль расчёта оптимальной величины серии и расписания запуска моделей в раз-4. работку;
- Динамические отчёты «Технологическая последовательность», «Расчёт оптимальной величины серии» и «Расписание запуска моделей».

В соответствии с программой расчёта оптимальной величины серии для планирования и оптимизации работы экспериментального производства разработан алгоритм проектирования нового изделия, который включает в себя 8 этапов (рисунок 2).

На первом этапе работы с БД осуществляется ввод данных о модели: вид основного материала, описание внешнего вида моделей для разных ценовых групп.

На втором этапе в автоматическом режиме реализовывается алгоритм конфекционирования в зависимости от характеристик и стоимости материалов.

На третьем этапе – алгоритм выбора методов обработки в зависимости от характеристик материала и ценовой группы изделия.

На четвёртом этапе реализован алгоритм формирования технологической последовательности в зависимости от выбранных методов обработки.

На пятом этапе вводятся исходные данные для расчёта оптимальной длительности производственного цикла:

 A_{i} – постоянные фиксированные издержки, связанные с разработкой i-той продукции, руб.;

 B_i - удельные переменные издержки, связанные с изготовлением i-той продукции, руб.;

 C_i - цена реализации единицы *i*-той продукции, руб.

На шестом этапе вводится и редактируется:

 r_i - желаемый уровень рентабельности, %.

На седьмом этапе реализовывается алгоритм и программа расчёта оптимальной величины серии ценовой группы при заданной рентабельности. Рассчитываются объём производства, количество моделей в коллекции, прибыль от реализации серии, выручка и полные издержки производства.

289 Витебск 2009

На восьмом этапе выполняется расчёт оптимальной очерёдности запуска моделей разных ценовых групп в разработку.

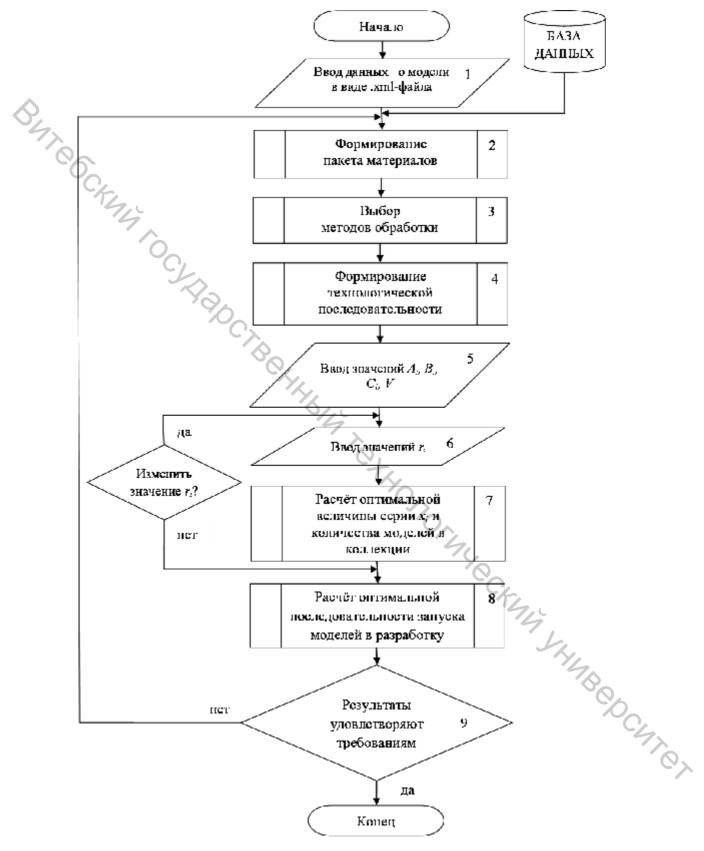


Рисунок 2 – Блок-схема работы с базой данных

290 Витебск 2009

Расписание запуска моделей разных ценовых групп сокращает затраты времени на конструкторско-технологическую подготовку моделей к производству, что позволит выполнить весь заказ в более короткие сроки, сократить цикл технической подготовки производства швейных изделий и провести необходимые согласования с заказчиком до запуска изделий в поток, а это в свою очередь значительно улучшит технико-экономические показатели всего предприятия.

Полученное оптимальное расписание по сравнению с общей трудоёмкостью разработки моделей уменьшает общее время разработки всех моделей коллекции в экспериментальном цехе, т.е. длительность производственного цикла от разработки лекал до проработки технологии изготовления швейного изделия.

Список использованных источников

1. Бакановская Л.Н. Использование информационных технологий для совершенствования процессов технической подготовки производства мужских костюмов разных ценовых групп / Л.Н. Бакановская, Н.С.Мокеева // Молодёжь и современные информационные технологии. Сборник трудов VII Всероссийской научно-практической конференции студентов, аспирантов и молодых учёных "Молодёжь и современные информационные технологии". Томск, 25-27 февраля 2009 г., Томск: Изд-во СПБ Графикс – 287 с. – С. 127-128.

УДК 687. 03: 677. 017

ИССЛЕДОВАНИЕ ТРАНСПОРТА ЖИДКОЙ ВЛАГИ ТЕКСТИЛЬНЫМИ МАТЕРИАЛАМИ

Т.О. Бунькова, Т.В. Глушкова Новосибирский технологический институт Московского государственного университета дизайна и технологии (филиал), г. Новосибирск, Российская Федерация

Госпитальной можно назвать одежду, предназначенную для использования больными в период госпитализации в лечебном учреждении. Особый интерес при проектировании госпитальной одежды для людей с заболеваниями, сопровождающимися повышенным потоотделением, вызывает исследование процесса транспорта жидкой влаги из пододежной области к наружным слоям одежды. Госпитальная одежда должна обеспечивать комфортный микроклимат пододежного пространства. Комфорт человек испытывает, когда чувствует тепло и сухость кожи. Поэтому материалы госпитальной одежды должны выводить большое количество жидкой влаги из пододежного пространства в окружающую среду.

Исследование транспорта влаги текстильными материалами предпринято на кафедре «Технологии и дизайна швейных изделий» НТИ МГУДТ. Решались следующие задачи: разработать основные этапы методики исследования и характеристики транспорта жидкой влаги материалом, отражающие физический смысл процесса влагопереноса; установить показатели характеристик влагопереноса материалов, пригодных для изготовления госпитальной одежды; выявить группы материалов с минимальной и максимальной способностью выведения жидкой влаги из пододежного пространства.

Методика исследования транспорта жидкой влаги заключается в выполнении нескольких этапов. На первом этапе формируется сложная проба, которая состоит из трех наложенных друг на друга слоев материалов.

Средняя проба выкраивается из исследуемой ткани, верхняя и нижняя — из смежной ткани. В качестве смежной используется 100% вискозная ткань с поверхностной плотностью 100 г/m^2 . Размер каждой единичной пробы 100x100 мм. Используя весы лабораторные (точ-

Витебск 2009 **291**