УДК 687.02.658.527

АНАЛИЗ МЕТОДИК ОТБОРА МОДЕЛЕЙ ПЛАЩЕЙ ДЛЯ ПОШИВА В ОДНОМ ПОТОКЕ

Т.М. Ванина, Т.Г. Кирьякова, М.И. Столяр УО «Витебский государственный технологический университет», г. Витебск, Республика Беларусь

Специфику современного швейного производства определяют конкуренция за рынки сбыта, высокие требования к качеству, динамичное развитие моды, большое разнообразие конструктивно-технологических особенностей моделей и применяемых материалов, малые величины заказов. В этой связи идет поиск новых организационных форм потоков. Одной из них являются гибкие, легко управляемые модульные потоки небольшой мощности (10-30 человек).

Успешная работа таких предприятий во многом зависит от правильности отбора моделей в поток и выбора оптимальной мощности потока.

В сложившейся практике отбор моделей производят исходя из коэффициентов относительной трудоемкости моделей (K_{TP}) и конструктивно-технологической однородности (K_{KTO}).

Для расчета коэффициента относительной трудоемкости моделей используют формулу:

$$K_{TP} = \frac{T_i}{T_{EA3}},\tag{1}$$

где T_i и T_{EA3} – соответственно трудоемкость i-ой и базовой моделей, с.

Коэффициент конструктивно-технологической однородности определяют, исходя из выражения:

$$K_{KTO} = \min\left(\frac{T_{cij}}{T_i}; \frac{T_{cij}}{T_j}\right), \tag{2}$$

где T_i и T_i – трудоемкость i-ой и j-ой моделей, c;

 T_{cij} — трудоемкость операций i-ой и j-ой моделей, совпадающих по содержанию и времени их выполнения.

Результаты исследований показали, что при использовании такого подхода в отобранные группы моделей подбираются «модели-близнецы», что противоречит условиям современного рынка [2].

В этой связи в настоящих исследованиях на вооружение были приняты две методики, свободные от указанного выше недостатка:

I методика, предложенная Макеевой Н.С. [3], основывалась на расчетах потребного количества оборудования по видам;

II методика, предложенная СПУДТ, основана на расчетах коэффициента загрузки оборудования ($K_{3A\Gamma P}$), представляющего собой отношение специализированных времен (T_{ij}), входящих в основное условие согласования к общему количеству специализированных времен (T_{OBIII}) [4]

$$K_{3A\Gamma P} = \frac{T_{ij}}{T_{OBIII}}.$$
(3)

В исследованиях одновременно с отбором моделей производился выбор оптимальной мощности потока. К исследованию принято шесть современных моделей женских плащей из смесовых тканей, отличающихся большим разнообразием модельных особенностей, указанных в таблице 1.

Витебск 2009 **271**

Таблица 1 – Характеристика исследуемых моделей женских плащей

Наименование конструктивных элементов		Условное обозначение моделей						
		A	Б	В	Γ	Д	Е	
Силуэт: г	олуприлегающий	+	+	+	+	+	+	
Перед:	с рельефами: от проймы	+	+				+	
	от плечевого шва			+				
	от кокетки до низа				+	+		
с кокеткой: фигурной		+						
9,	от горловины до низа				+			
7)	от горловины до проймы				+	+		
Застежка:	центральная бортовая	+				+	+	
0	смещенная		+	+	+			
Спинка: со средним швом		+		+		+		
•	с рельефом	+		+	+	+		
	со шлицей в среднем шве		+					
	с кокеткой от горловины до проймы				+	+		
Рукав:	втачной двухшовный	+	+	+	+	+		
	с манжетой		+			+	+	
Воротник:	стоячеотложной со стойкой	+		+				
	пиджачного типа		+			+	+	
	йонжолто				+			
Карманы:	боковые: накладные с клапаном	+						
	накладные, входящие в рельефный шов					+		
	прорезные с втачной листочкой		+					
	прорезные с настрочной листочкой			+				
	прорезные с клапаном и обтачкой						+	
	в швах рельефов				+			
Отделка:	пата	+		+	+			
	пояс	D ₊						
Отделочные строчки: по краям изделия		40	+	+	+	+	+	
	рельефам	+		+	+	+		
	мелким деталям	+	+	+	+	+		
	среднему шву спинки		(2	+			
	кокеткам		_	4	, +			

Численность рабочих в потоке варьировалась в пределах 15-30 человек.

Значения полученных коэффициентов загрузки оборудования по моделям и мощностям сведены в таблицу 2.

Таблица 2 – Значения коэффициентов загрузки оборудования

	Коэффициент	г загрузки обо	рудования п	ри числен-		
Условное обозначение модели	ности рабочих					
	15 чел.	20 чел.	25 чел.	30 чел.		
A	0,81	0,76	0,87	0,81		
Б	0,75	0,68	0,83	0,77		
В	0,46	0,73	0,85	0,72		
Γ	0,69	0,74	0,85	0,69		
Д	0,77	0,75	0,85	0,81		
Е	0,66	0,53	0,77	0,83		

Примечание: оптимальным считается $K_{3A\Gamma P} \ge 0.6$ [5].

272 Витебск 2009

Как видно из полученных результатов наиболее высокие и стабильные значения коэффициентов загрузки оборудования соответствуют мощности потока 25 человек ($K_{3A\Gamma P}$ = 0.83-0.85), причем в моделях В, Г, Д они полностью совпадают ($K_{3A\Gamma P}=0.85$).

Для принятия окончательного решения по отбору моделей для заданных мощностей производили расчет потребного количества оборудования по видам (n_i) с использованием формулы

$$n_i = \frac{\sum T_{ij}}{t},\tag{4}$$

где $\sum T_{ij}$ — сумма затрат времени на i-ом виде оборудования по j-ой модели, с; τ — такт потока, с.

Величины расчетных значений n_i сведены в таблицу 3.

Данные таблицы 3 еще раз подтверждают вывод о целесообразности изготовления в одном потоке моделей В, Г, Д, так как они имеют аналогичный парк оборудования.

Таблица 3 – Расчет потребного количества оборудования по видам при N = 25 человек

Марка оборудования,	Фактическое количество оборудования по моделям						
фирма-изготовитель	A	Б	В	Γ	Д	Е	
487 кл. «Пфафф»	2	2	2	2	2	2	
481 кл. «Пфафф»	13	11	13	13	13	12	
335 кл. «Пфафф»	1	1	1	1	1	1	
3306-7/01 В+ЕА6 «Пфафф»	1	1	1	1	1	1	
558-51301Д «Дюркопп»	1	1	1	1	1	1	
4415 «Veit»	5	6	6	6	6	5	

Таким образом, методика отбора моделей на основании расчетов коэффициента загрузки и потребного количества оборудования по видам позволит сократить время проектных работ, обеспечить разнообразие моделей на рынке сбыта, избежать издержек при переходе с одной модели на другую.

Список использованных источников

- 1. Изместьева, А. Я. Проектирование предприятий швейной промышленности: учебник для ВТУЗов / А. Я. Изместьева [и др.]; под ред. А. Я. Изместьевой. – Москва: Легкая и пищевая промышленность, 1983. – 264 с.
- 2. Исследование возможности изготовления моделей в многоассортиментном потоке / Е. С. Батурина [и др.] . – Витебск : УО «ВГТУ», - С. 298-299.
- 3. Мокеева, Н. С. Методические основы проектирования гибких швейных потоков в условиях мелкосерийного производства: автореферат диссертации на соискание ученой степени доктора технических наук / Н. С. Мокеева. – Москва, 2004. – 52 с.
- 4. Мишенин, О. А. Оптимизация мощности технологических процессов по изготовлению швейных изделий / О. А. Мишенин, Ю. В. Пархоменко // В мире оборудования. – № 1. - 2008. - C. 18-19.

273 Витебск 2009