As a result of experimental researches it was found out, that a new kind of building plates, with the 60 % amount of textile waste addition has the best properties of heat isolation. Therefore it is possible to recommend them for wide application in industry.

УΔК 547.92+547.288.4+547.362+547.574.2

ПОЛУЧЕНИЕ И ИЗУЧЕНИЕ КОРРЕЛЯЦИИ «СТРУКТУРА-ЗАПАХ» СЛОЖНЫХ ЭФИРОВ ОКСИМА α -ИОНОНА

Н.А. Жуковская, Е.А. Дикусар, В.И. Поткин, Ю.С. Зубенко,

С.К. Петкевич, С.Г. Стёпин

α-Ионон или транс-4-(2,6,6-триметил-2-циклогексен-1-ил)-3-бутен-2-он **1** содержится в некоторых природных эфирных маслах, обладает запахом фиалки с древесно-фруктовой нотой [1]. Он является многотоннажным промышленным продуктом и широко используется в парфюмерных композициях, отдушках и пищевых ароматизаторах [2, 3]. В промышленности -ионон **1** получают конденсацией цитраля с ацетоном с последующей циклизацией полученного псевдоионона. Ранее мы сообщали о синтезе и изучении корреляции структуразапах сложных эфиров оксимов цитраля и ментона [4, 5].

Целью данной работы является разработка технологичной методики получения широкого ряда новых сложных эфиров – производных оксима α -ионона **2**. Сложные эфиры оксима α -ионона **3-23** синтезировали взаимодействием оксима α -ионона **2** с ангидридами алкилкарбоновых кислот в присутствии каталитических количеств хлорной кислоты (эфиры **3-6**) или с хлорангидридами карбоновых кис α т в присутствии пиридина (эфиры **7-23**). Выходы сложных эфиров оксима α -ионона **3-21** составили α 7 – 92 %.

Строение синтезированных соединений 2-23 подтвердили данные элементного анализа, масс-спектрометрического определения молекулярной массы, ИК-, УФ- и ЯМР 1Н-спектров.

 $R = CH_3$ (3), C_2H_5 (4), $CH_3(CH_2)_2$ (5), $(CH_3)_2CH$ (6), $CH_3(CH_2)_3$ (7), $(CH_3)_2CHCH_2$ (8), $(CH_3)_3C$ (9), $CH_3(CH_2)_4$ (10), $CH_3(CH_2)_5$ (11), $CH_3(CH_2)_6$ (12), $CH_3(CH_2)_3CH(C_2H_5)$ (13), $CH_3(CH_2)_7$ (14), $CH_3(CH_2)_8$ (15), $CH_3(CH_2)_{11}$ (16), $UUKRO-C_6H_{11}$ (17), C_6H_5 (18), CH_3O (19), C_2H_5O (20), C_2H_5CHCI (21), $CI_2C=CCICH_2$ (22),

114 Витебск 2011

В ЯМР ^{I}H спектрах сложных эфиров окси**м**а -ионона **3-23** наблюдались следующие сигналы протонов, принадлежащих фрагменту *транс*-4-(2,6,6-триметил-2-циклогексен-1-ил)-3-бутена (δ , м.д.): 0.84 с [δ , с [δ

Органолептическую оценку ароматов синтезированных оксима -ионона 2 и сложных эфиров оксима -ионона 3-23 провел Дегустационный совет при аккредитованной контрольно-аналитической лаборатории ООО «Тереза-Интер» (г. Москва). В таблице приведены среднестатистические данные дегустации ароматов полученных индивидуальных соединений в виде 10 % спиртовых растворов.

Таблица – Органолептическая оценка ароматов соединений 2-23

Соединение	Запах
2	Древесно-дегтярный, животный, нота кастореума
3	Древесно-цветочный, ноты ириса-конкрета и кожи
4	Древесный, землистый, нота кожи
5	Древесно-кедровый, ягодная нота
6	Древесно-кожаный, цветочная нота
7	Древесно-пачулиевый, ягодная нота
8	Древесно-амбровый, фруктовая нота
9	Древесный, с фруктово-ягодным оттенком
10	Древесно-пачулиевый с травяным оттенком
11	Древесно-травяной с фруктовой нотой
12	Фруктово-травяной, ноты мяты и груши
13	Древесно-пачулиевый, животная нота мускуса
14	Древесно-пачулиевый с травяной нотой
15	Древесно-землистый
16	Древесно-дегтярный
17	Древесно-травяной, нота лаванды
18	Древесно-пряный, ноты гвоздики, перца, имбиря
19	Древесно-цветочный с ягодной нотой
20	Древесно-цветочный с фруктовой нотой
21	Древесно-ягодный с нотой барбариса
22	Древесно-цветочный с ягодной нотой
23	Древесно-овощной, нота листьев томата

Из данных табл. 1 следует, что с увеличением алкильного заместителя в соединениях 3-5, 7, 8, 10-12 наблюдается изменение запаха от древесноцветочного к древесно-амбровым с последующим усилением фруктово-травяных нот. Введение разветвленных алкильных заместителей в соединениях 5, 6, 7, 9 усиливает фруктово-ягодную ноту. Введение пространственных циклических заместителей в соединении 17 приводит к очень интересному и востребованному древесно-травяному аромату с выраженной нотой лаванды, а при введении фенильного заместителя в соединении 18- появлению очень интересного

Вестник ВПУ 115

древесно-пряного аромата восточных пряностей. Введение алкокси-заместителей в соединениях **19** – **20** позволяет наблюдать яркие древесно-цветочные ароматы с фруктово-ягодными нотами, модные озоновые ароматы с интересными оттенками. Синтезированные соединения являются перспективными для создания устойчивых древесных ароматов, которые сейчас модны и востребованы в современной парфюмерии. Особенно перспективными являются соединения **17** и **18** для создания новых мужских ароматов, поскольку восточные ароматы востребованы на рынке высшей парфюмерии и косметики.

спектры синтезированных соединений записаны на ИК Фурьеспектрофотометре Protege-460 фирмы "Nicolet" в тонком слое или в таблетках КВг. Спектры ЯМР ^{1}H получены на спектрометре BS-587A (100МГц, Tesla) для 5 %-ных растворов в $CDCl_3$, химические сдвиги определяли относительно внутреннего стандарта – тетраметилсилана. УФ спектры – на приборе Specord UV Vis для 1 10-4 М. растворов соединений в метаноле. Масс-спектры получены на хромато-массспектрометре Hewlett-Packard HP 5890/5972 в режиме ионизации электронным ударом с энергией электронов 70 эВ; капиллярная колонка HP-5MS 30 м x 0.25 мм, фаза (5 % PhMe Silicone) 0.25 мкм, температура испарителя – 250 °C. Физикохимические характеристики оксима -ионона 2, имевшего т.пл. 89-90 °C и синтезированного иза -ионона 1 по стандартной методике [5], соответствовали литературным данным [6,7].

Общая методика получения сложных эфиров оксима α-ионона 3 – 6.

0.01 Моль оксима α -ионона 2 и 0.011 моль ангидрида соответствующей кислоты растворяли в 30 см³ абсолютного эфира. К полученному раствору добавляли 1 каплю 47 %-ной $HClO_4$. Смесь перемешивали путем встряхивания и оставляли при температуре 20-23 °C на 24-36 ч. Реакционную смесь разбавляли водой, продукт экстрагировали эфиром. Органический слой отделяли, промывали водой и 5 %-ным раствором $NaHCO_3$. Сушили $CaCl_2$. Растворитель удаляли при пониженном давлении (p=20-35 мм рт. ст.), не допуская нагревания выше 25-30 °C. Окончательную очистку проводили методом колоночной хроматографии на силикагеле L $40/100~\mu$, элюент – смесь эфир-гексан, 1:10.

По данной методике получены следующие соединения.

транс-4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-ацетилоксим 3. Выход 88 %, d_{20}^{20} 1.1451, n_D^{20} 1.5200. Найдено, %: *C* 72.59; *H* 9.48; *N* 5.27. *M*⁺ 249. *C*₁₅*H*₂₃*NO*₂. Вычислено, %: *C* 72.25; *H* 9.30; *N* 5.62. *M* 249.35. ИК-спектр (ν , см⁻¹): 1769 (*C*=*O*). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 285 (2000).

транс-4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-пропионилоксим 4. Выход 87 %, d_{20}^{20} 1.0268, n_D^{20} 1.5186. Найдено, %: C 73.25; H 10.07; N 5.08. M^{+} 263. $C_{16}H_{25}NO_{2}$. Вычислено, %: C 72.96; H 9.57; N 5.32. M 263.38. ИК-спектр (ν , см⁻¹): 1769 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 284 (2000).

*транс-***4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-***О*-бутирилоксим **5.** Выход 88 %, d_{20}^{20} 1.1108, n_D^{20} 1.5162. Найдено, %: C 73.94; H 9.98; N 4.67. M^{\dagger} 277. $C_{17}H_{27}NO_2$. Вычислено, %: C 73.61; H 9.81; N 5.05. M 277.40. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 235 (19000), 284 (2000).

*транс-***4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-***О*- **изобутирилоксим 6.** Выход 89 %, d_{20}^{20} 0.9991, n_D^{20} 1.5088. Найдено, %: C 74.01; H 9.97; N 4.89. M^{\dagger} 277. $C_{17}H_{27}NO_2$. Вычислено, %: C 73.61; H 9.81; N 5.05. M 277.40. ИК-спектр (ν , см⁻¹): 1766 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 235 (19000), 285 (2000).

Общая методика получения сложных эфиров оксима α-ионона 7-23.

0.01 Моль оксима -ионона **2** растворяли в 50 см 3 абсолютного эфира. К полученному раствору прибавляли 0.01 моль абсолютного пиридина. К полученному раствору при охлаждении до 15 $^{\circ}$ C и перемешивании путем осторожного встряхивания прибавляли 0.01 моль хлорангидрида соответствующей кислоты. Смесь оставляли при температуре 20 – 23 $^{\circ}$ C на 24 – 36 ч. Реакционную

116 Витебск 2011

смесь разбавляли водой, продукт экстрагировали эфиром. Органический слой отделяли, промывали водой и 5 %-ным раствором $NaHCO_3$. Сушили $CaCl_2$. Растворитель удаляли при пониженном давлении (p = 20 - 35 мм рт. с τ), не допуская нагревания выше 25 - 30°C. Окончательную очистку проводили методом колоночной хроматографии на силикагеле L 40/100 μ , элюент - смесь эфир-гексан, 1·10

По данной методике получены следующие соединения.

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-валероилоксим 7.

Выход 88 %, d_{20}^{20} 1.0281, n_D^{20} 1.5080. Найдено, %: C 74.59; H 10.18; N 4.60. M^{\dagger} 291. $C_{18}H_{29}NO_2$. Вычислено, %: C 74.18; H 10.03; N 4.81. M 291.43. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 285 (2000).

транс-4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-О-изовалероилоксим 8. Выход 91 %, d_{20}^{20} 1.0585, n_D^{20} 1.5030. Найдено, %: C 74.52; H 10.11; N 4.57. M^{+} 291. $C_{I8}H_{29}NO_2$. Вычислено, %: C 74.18; H 10.03; N 4.81. M 291.43. ИК-спектр (ν , см⁻¹): 1766 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ε)]: 235 (19000), 285 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-пивалоилоксим 9.

Выход 90 %, $d_{20}^{\ 20}$ 1.0870, $n_D^{\ 20}$ 1.5065. Найдено, %: C 74.52; H 10.14; N 4.55. M^+ 291. $C_{18}H_{29}NO_2$. Вычислено, %: C 74.18; H 10.03; N 4.81. M 291.43. ИК-спектр (ν , см⁻¹): 1760 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 235 (20000), 285 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-капроноилоксим 10.

Выход 91 %, d_{20}^{20} 1.0215, n_D^{20} 1.5052. Найдено, %: C 75.08; H 10.26; N 4.28. M^{\dagger} 305. $C_{I9}H_{3I}NO_2$. Вычислено, %: C 74.71; H 10.23; N 4.59. M 305.45. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 284 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-энантоилоксим

Выход 90 %, d_{20}^{20} 0.9081, n_D^{20} 1.5053. Найдено, %: C 75.42; H 10.49; N 4.17. M^{+} 319. $C_{20}H_{33}NO_{2}$. Вычислено, %: C 75.19; H 10.41; N 4.38. M 319.48. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 284 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-каприлоилоксим 12.

Выход 90 %, d_{20}^{20} 0.9213, n_D^{20} 1.5020. Найдено, %: C 75.99; H 10.73; N 3.87. M^{+} 333. $C_{21}H_{35}NO_{2}$. Вычислено, %: C 75.63; H 10.58; N 4.20. M 333.51. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 285 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-2этилкапроноил-оксим 13.

Выход 91 %, d_{20}^{20} 1.0558, n_D^{20} 1.5135. Найдено, %: C 75.85; H 10.67; N 3.96. M^{+} 333. $C_{2I}H_{35}NO_2$. Вычислено, %: C 75.63; H 10.58; N 4.20. M 333.51. ИК-спектр (ν , см⁻¹): 1764 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 235 (20000), 285 (2000).

транс-4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-пеларгонилоксим 14.

Выход 90 %, d_{20}^{20} 0.9789, n_D^{20} 1.5018. Найдено, %: C 76.41; H 10.80; N 3.72. M^{\dagger} 347. $C_{22}H_{37}NO_2$. Вычислено, %: C 76.03; H 10.73; N 4.03. M 347.53. ИК-спектр (ν , см⁻¹): 1767 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (19000), 284 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-каприноилоксим 15.

Выход 88 %, d_{20}^{20} 1.0681, n_D^{20} 1.5012. Найдено, %: \boldsymbol{C} 76.83; \boldsymbol{H} 10.96; \boldsymbol{N} 3.65. \boldsymbol{M}^{+} 361. $\boldsymbol{C}_{23}\boldsymbol{H}_{39}\boldsymbol{NO}_{2}$. Вычислено, %: \boldsymbol{C} 76.40; \boldsymbol{H} 10.87; \boldsymbol{N} 3.87. \boldsymbol{M} 361.56. ИК-спектр ($\boldsymbol{\nu}$, см⁻¹): 1767 (\boldsymbol{C} = \boldsymbol{O}). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (18000), 284 (2000).

Вестник ВПУ 117

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-тридеканоил оксим 16.

Выход 90 %, d_{20}^{20} 1.0532, n_D^{20} 1.4974. Найдено, %: C 77.72; H 11.25; N 3.18. M^{\dagger} 403. $C_{26}H_{45}NO_2$. Вычислено, %: C 77.37; H 11.24; N 3.47. M 403.64. ИК-спектр (ν , см⁻¹): 1768 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (18000), 284 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-циклогексанметаноилоксим 17.

Выход 89 %, d_{20}^{20} 1.0431, n_D^{20} 1.5214. Найдено, %: C 75.86; H 10.12; N 4.15. M^{\dagger} 317. $C_{20}H_{3I}NO_2$. Вычислено, %: C 75.67; H 9.84; N 4.41. M 317.47. ИК-спектр (ν , см⁻¹): 1763 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 234 (20000), 286 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-бензоилоксим 18.

Выход 91 %, d_{20}^{20} 1.2215, n_D^{20} 1.5557. Найдено, %: C 77.57; H 8.18; N 4.26. M^{\dagger} 311. $C_{20}H_{25}NO_2$. Вычислено, %: C 77.14; H 8.09; N 4.50. M 311.42. ИК-спектр (ν , см⁻¹): 1747 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 201 (18000), 235 (19000), 255 (18000), 300 (3000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-(метилкарбонат)-оксим 19.

Выход 88 %, d_{20}^{20} 1.1947, n_D^{20} 1.5178. Найдено, %: C 68.13; H 8.91; N 5.02. M^{+} 265. $C_{15}H_{23}NO_{3}$. Вычислено, %: C 67.90; H 8.74; N 5.28. M 265.35. ИК-спектр (ν , см⁻¹): 1782 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 236 (20000), 285 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*O*-(этилкарбонат)-оксим 20.

Выход 89 %, d_{20}^{20} 1.0672, n_D^{20} 1.5090. Найдено, %: C 68.96; H 9.14; N 4.73. M^{\dagger} 279. $C_{16}H_{25}NO_3$. Вычислено, %: C 68.79; H 9.02; N 5.01. M 279.37. ИК-спектр (ν , см † 1): 1778 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 236 (20000), 285 (2000).

транс-4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*O*-2-хлорбутирилоксим 21.

Выход 89 %, d_{20}^{20} 1.1600, n_D^{20} 1.5143. Найдено, %: C 65.86; H 8.51; Cl 11.05; N 4.16. M^{\dagger} 310. $C_{17}H_{26}ClNO_2$. Вычислено, %: C 65.48; H 8.40; Cl 11.37; N 4.49. M 311.85. ИК-спектр (ν , см⁻¹): 1771 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 238 (20000), 285 (2000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-3,4,4-трихлор-3-ен-бутирилоксим 22.

Выход 90%, d_{20}^{20} 1.3516, n_D^{20} 1.5407. Найдено, %: C 54.28; H 6.12; Cl 27.57; N 3.31. M^+ 377. $C_{17}H_{22}Cl_3NO_2$. Вычислено, %: C 53.91; H 5.86; Cl 28.08; N 3.70. M 378.72. ИК-спектр (ν , см⁻¹): 1770 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 202 (21000), 233 (25000), 280 (3000).

*транс-*4-(2,6,6-Триметил-2-циклогексен-1-ил)-3-бутен-2-он-*О*-4,5-дихлоризотиазол-метаноилоксим 23.

Выход 88 %, d_{20}^{20} 1.2110, n_D^{20} 1.5725. Найдено, %: **С** 53.16; **H** 5.36; **Cl** 17.90; **N** 6.89; **S** 8.01. M^+ 387. $C_{17}H_{20}Cl_2N_2O_2S$. Вычислено, %: **С** 52.72; **H** 5.20; **Cl** 18.31; **N** 7.23; **S** 8.28. **M** 387.32. ИК-спектр (ν , см⁻¹): 1760 (C=O). УФ-спектр [$\lambda_{\text{макс.}}$, нм (ϵ)]: 204 (20000), 231 (19000), 270 (15000), 320 (3000).

Авторы приносят благодарность сотрудникам контрольно-аналитической лаборатории ООО «Тереза Интер», Россия, Москва О.Г. Выглазову и В.А. Чуйко за проведение органолептической оценки ароматов синтезированных соединений.

выводы

Разработаны общие методики получения сложных эфиров оксима -ионона. Получены 22 новых душистых соединения. Изучена корреляция «структура—запах»

118 Витебск 2011

полученных соединений. Строение синтезированных соединений подтверждено данными элементного анализа, ИК, УФ, ЯМР ¹Н и хромато-масс-спектров.

Список использованных источников

- Sewenig, S. Comprehensive authentication of (E)-α(β)- ionone from raspberries, using constant flow MDGC-C/P-IRMS and enantio-MDGC-MS / S. Sewenig, D. Bullinger, U. Hener, A. Mosandl // J. Agric. Food Chem. 2005. Vol. 53. N. 4. P. 838-844.
- 2. Marshall, D. A. Olfactory sensitivity to α-ionone in humans and dogs / D. A. Marshall, D. G. Moulton // Chem. Senses. 1981. Vol. 6. N. 1. P. 53-61.
- 3. Войтович, С. А. 865 Душистых веществ для парфюмерии и бытовой химии / С. А. Войтович. Москва : Пищевая промышленность, 1994. С. 225-227.
- 4. Дикусар, Е. А. Синтез и изучение корреляции структура–запах сложных эфиров оксима цитраля / Е. А. Дикусар, Н. А. Жуковская, К. Л. Мойсейчук, Е. Г. Залесская, О. Г. Выглазов, П. В. Курман // ХПС. 2008.- № 1. С. 65-66.
- 5. Жуковская, Н. А. Препаративный синтез сложных эфиров оксима ментона / Н. А. Жуковская, Е. А. Дикусар, К. Л. Мойсейчук, О. Г. Выглазов // ЖПХ. 2006. Т. 79. Вып. 4. С. 642-644.
- Adams, T. B. The FEMA GRAS assassment of alicyclic substances used as flavour ingredients / J. B. Hallagan, J. M.Putnam, T. L. Gierke, J. Doull, I. C. Munro, P. Newberne, P. S. Pontoghese, R. L. Smith, B. M. Wagner, C. S. Weil, L. A. Woods, R. A. Ford // Food and Chem. Toxicol. – 1996. – Vol. 34. – N. 9. – P. 763-828.
- 7. Хейльборн, И. Словарь органических соединений / И. Хейльборн, Г. М. Бэнбери. Москва : ИЛ, 1949. Т. 2. С. 892.

Статья поступила в редакцию 23.09.2011 г.

SUMMARY

The convenient method of the preparative synthesis of the α -ionone oxime esters was developed. The «structure-smell» correlation of the compounds obtained was studied. Structure of the compounds synthesized was confirmed by the data of element analysis, IR, UV, NMR 1 H and mass spectra. Key words: α -ionone, oxime of α -ionone and, esters of α -ionone oxime, smell.

УДК 547.281+547.381+347.422

ТЕХНОЛОГИЯ СИНТЕЗА СЛОЖНЫХ ЭФИРОВ ОКСИМА ГАНОНА

Н.А. Жуковская, Е.А. Дикусар, С.Г. Стёпин

Интенсивное развитие тонкого органического синтеза, химической технологии и методов физико-химического анализа, особенно в приложении к исследованиям состава эфирных масел, внесло существенный вклад в практику производства душистых веществ, пригодных для использования в парфюмерии и при создании отдушек для моющих средств, косметических изделий и товаров бытовой химии. К настоящему времени в распоряжении парфюмеров и технологов парфюмерно-косметических производств имеется около 10 000 душистых соединений с установленной химической структурой. Однако изучение каталогов основных брендовых фирм-изготовителей душистых соединений показывает, что практически производится не более 4 000 такого рода соединений. Вероятно, это связано с причинами экономического или экологического характера. А некоторые

Вестник ВГТУ 119