Стимул-240, выработанных большим содержанием хлопка. Менее всего набухает ткань Томбой, содержащая 67 % ПЭ, 33 % ХЛ, поэтому у данной ткани стойкость к истиранию уменьшается после стирок и опытной носки. Стойкость к истиранию тканей Грета и ТЕМП-1 также уменьшается, что связано с наличием большого количества полиэфира, который не набухает.

УДК 677.074

АНАЛИЗ СТРУКТУРНЫХ ХАРАКТЕРИСТИК И ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ КАМВОЛЬНЫХ КОСТЮМНЫХ ТКАНЕЙ

Лобацкая Е.М., доц., Петрова Р.С., асс., УО «Витебский государственный технологический университет», г. Витебск, Республика Беларусь

Выбор материалов для швейных изделий — одна из важных систем швейного производства работа, которой в значительной мере определяет качество швейных изделий, надежность и эффективность работы всей системы. Качество продукции и в частности швейных изделий существенно зависит не только от квалификации художников модельеров, конструкторов и технологов, но так же от грамотно подобранных материалов в пакет швейного изделия, их расцветки и структуры. Поэтому особое значение приобретает научно обоснованный выбор материалов на швейное изделие.

В работе был проведен анализ структурных характеристик и физико-механических свойств костюмных тканей импортного и отечественного производства, различного сырьевого состава.

В таблице 1 представлены данные основных структурных характеристик, изученных образцов. При анализе проводилось определение сырьевого состава, вида переплетения, линейной плотности нитей основы и утка, плотности нитей в ткани и поверхностной плотности.

При анализе данных образцов, установлено, линейная плотность по основе и утку в различных материалах изменяется в пределах от 25 до 49 текс; плотность нитей — от 200 до 780 нитей на 100 мм; поверхностная плотность от 181 до 328 г/m^2 . Из вышесказанного можно сделать вывод, что исследуемые ткани относятся к камвольным, которые характеризуются гладкой поверхностью, открытым ткацким рисунком, четкой и выразительной фактурой. Это наиболее легкие и тонкие шерстяные ткани, с поверхностной плотностью $150-400 \text{ г/m}^2$.

Проведенные исследования показали, что образец №5, который по внешнему виду напоминает ткань с применением лайкры, на самом деле не содержит данное волокно, а имеет высокую растяжимость за счет использования текстурированных полиэфирных нитей в основе и утке.

Основные виды переплетений, используемых в данных образцах: саржевое, мелкоузорчатое, образец № 3 имеет полуторолойное переплетение.

На следующем этапе были проведены исследования физико-механических свойств всех образцов по следующим показателям: разрывное усилие, разрывное удлинение, жесткость, несминаемость, усадка по основе и утку.

Таблица 1 – Структурные характеристики образцов тканей

таолица т – Структурные характеристики ооразцов тканей											
№ об- раз-	Сырьево	Линейная плотность нитей, текс		Плотность нитей на 100 мм, н/100 мм		Поверх- ностная плотность,					
ца	основы	утка	основы	утка	основы	утка	г/м ²				
1	шерсть 67 % лавсан 33 %	шерсть 50 % лавсан 50 %	44	40	460	230	280				
2	шерсть 67 % лавсан 33 %	шерсть 67 % лавсан 33 %	38	32	360	260	208				
3	шерсть 60 % нитрон 30 % вискоза 10 %	шерсть 60 % нитрон 30 % вискоза10 %	29	25	780	340	328				
4	шерсть 80 % нитрон 20 %	шерсть 80 % нитрон 20%	33	35	320	200	181				
5	лавсан 80 % шерсть20 %	лавсан 80 % шерсть 20 %	49	43	450	300	320				

Определение указанных характеристик проводилось в лаборатории материаловедения кафедры ткачества УО « ВГТУ». В таблице 2 представлены данные по исследованию физико-механических характеристик тканей.

Костюмные полушерстяные ткани занимают большой удельный вес в выпуске всех тканей, так как они имеют красивый внешний вид, обладают повышенной износостойкостью и формоустойчивостью.

Полушерстяные ткани различают содержанием шерсти и вводимых дополнительно волокон (вискозное, капроновое, лавсановое и т. д.), видами этих волокон, способом их введения. Содержание шерсти в полушерстяных тканях может быть от 20 % до 90 %. Условно можно выделить ткани с малым (до 40 %), средним (40 - 70 %) и большим (свыше 70 %) содержанием шерсти.

Витебск 2013 113

Каждое вводимое волокно влияет на свойства тканей. Так, введение вискозы несколько ухудшают внешний вид, увеличивают сминаемость, ткани плохо держат складки и увеличивается усадка, однако придает тканям мягкость и хорошие гигроскопические свойства. Введение синтетических волокон придает тканям упругость и несминаемость, повышенную прочностью и стойкостью к истиранию.

Таблица 2 – Показатели физико-механических характеристик исследуемых тканей

Показатели	Образцы ткани					Hamasaman	TUDA	
свойств	1	2	3	4	5	Норматив	ТНПА	
Разрывное								
усилие, Н								
- основа	1678	2305	1370	675	1743	не менее 530	СТБ 1145-99	
- уток	852	654	540	504	828	не менее 340	СТБ 1145-99	
γ_{λ}								
Разрывное								
удлинение,%								
- основа	52	49	30	39	72	не менее 25	СТБ 1145-99	
- уток	42	39	40	39	62	не менее 20	СТБ 1145-99	
Несминае-	アノし							
мость, %	4							
- основа	81	87	86	90	84	не менее 60	ГОСТ 29223-91	
- уток	87	87	87	88	89	не менее 60	FOCT 29223-91	
Усадка, %		\mathbb{C}_{ℓ}						
- основа	1	0,1	1,3	0,5	0,1	не более 3,0	СТБ 1145-99	
- уток	0,5	0,1	2	1	1	не более 3,5	СТБ 1145-99	
Жесткость,		10)	6					
мкН*см ²		/	2					
костюмные			C'X					
- основа	3365	2951	6657	2498	1270	4000-7000	ЦНИИШП	
- уток	1876	729	1644	603	1675	4000-7000	ЦНИИШП	
платьевые				X .				
- основа	3365	2951	6657	2498	1270	до 7000	ЦНИИШП	
- уток	1876	729	1644	603	1675	до 7000	ЦНИИШП	

Наиболее широко в настоящее время в полушерстяных тканях применяется лавсан, благодаря которому улучшает ряд свойств тканей: повышает устойчивость к истиранию, снижаются усадка и сминаемость во влажном состоянии, повышается устойчивость заутюженных складок. Наряду с улучшением свойств, проявляются некоторые отрицательные свойства: снижается их гигроскопичность, ухудшает пластичность при влажно-тепловых обработках, что усложняет пошив изделий, появляется пиллинг.

Введение нитрона дает возможность получить ткани, обладающие мягкостью, шерстистостью, малой склонностью к образованию пиллинга. Это волокно характеризуется исключительно высокой устойчивостью к светопогоде, упругостью, оно легко очищается. Однако при влажно-тепловой обработке необходимо избегать увлажнения, так как волокно может разрушаться.

При сравнении данных полученных при испытаниях с нормативами, было выявлено, что все образцы по исследуемым показателям соответствуют требованиям стандартов.

Согласно ГОСТ 29223-91 несминаемость полушерстяных тканей не менее 60 %.

Исследования показали, что несминаемость данных образцов очень высокая 80 - 90 % благодаря содержанию полиэфирных волокон, что соответствует нормативам стандартов.

По требованиям стандартов (ГОСТ 28000-2004) усадка тканей не должна превышать 3,5 % по основе и 3,0 % утку, исследуемые образцы соответствуют данным нормативам и могут быть отнесены к малоусадочным.

Максимальной жесткостью по основе обладает образец № 3, по утку № 1. Минимальная жесткость по основе у образца № 5, по утку № 4. В соответствии с полученными характеристиками образцы № 3 и № 1 могут быть рекомендованы для производства костюмов, остальные ткани по показателю жесткости больше подходят для плательного ассортимента.

При анализе исследуемых образцов прослеживается зависимость физико — механических свойств от сырьевого состава ткани. Так с увеличением содержания синтетических волокон разрывное усилие и разрывное удлинение увеличиваются. При сравнении данных полученных при испытаниях с нормативами, было выявлено, что все образцы по исследуемым показателям соответствуют требованиям стандартов. Высокая несминаемость и низкая усадка дает возможность использовать данные ткани для пошива различного ассортимента изделий. Ткани небольшой плотности, особенно саржевого переплетения, сильно растягиваются, поэтому для придания жесткости отдельным деталям изделия (воротник, лацкан и т. д.) необходимо рекомендовать в массовом производстве использовать клеевые прокладочные материалы. Ткани значительной плотности обладают повышенной осыпаемостью и прорубаемостью, трудно поддаются сутюживанию и оттягиванию. Гладкая поверхность тканей требует тщательного выполнения всех операций, так как все недостатки исполнения в изделиях будут заметны. Все это надо учитывать при конструировании, пошиве и ВТО швейных изделий.

114 Витебск 2013