УДК 677.017

ИССЛЕДОВАНИЕ ВЛИЯНИЯ МНОГОКРАТНЫХ СТИРОК И ОПЫТНОЙ НОСКИ НА СТОЙКОСТЬ К ИСТИРАНИЮ ТКАНЕЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПОШИВА КОСТЮМОВ РАБОЧИХ СТРОИТЕЛЬНЫХ СПЕЦИАЛЬНОСТЕЙ

Курденкова А.В. *, доц., Шустов Ю.С. *, проф., Федулова Т.Н.**, педагог-организатор, Асланян* А.А., асп. *Московский государственный университет дизайна и технологии, **Колледж связи № 54, г. Москва, Российская Федерация

В процессе использования ткани специального назначения подвергаются истирающим воздействиям различными абразивными материалами.

Для исследования выбрали 6 образцов саржевого переплетения (табл. 1). Ткани отличаются плотностью по основе и утку, а также линейной плотностью нитей. Волокнистый состав тканей также варьировали.

Таблица 1 – Структурные характеристики исследуемых тканей

Наименование	Наименование ткани						
показателей	Томбой	Премьер Standard 250	Стимул-240	Грета	Балтика	ТЕМП-1	
Поверхностная плотность ткани М1, г/м ²	245	250	241	235	241	220	
Линейная плотность нитей основы T _o , текс	32,0	42,0	42,2	35,0	41,8	31,2	
Линейная плотность нитей утка Т _у , текс	60,2	48,0	59,6	52,1	59,6	58,0	
Плотность по основе П _о , нитей основы / 100 мм	336	318	320	368	310	381	
Плотность по утку Π_{y} , нитей / 100 мм	248	200	200	214	200	160	
Толщина ткани b, мм	0,43	0,36	0,40	0,38	0,45	0,41	

Ткани подвергались 1, 5, 10, 25 и 50 стиркам бытовым порошком в соответствии с ГОСТ Р ИСО 6330. Также были взяты образцы из костюмов после 0,5 и 1 года опытной носки.

В табл. 2 приведены результаты определения стойкости к истиранию тканей специального назначения при истирании серошинельным сукном на приборе ДИТ-М в соответствии с ГОСТ 18976–73 «Ткани текстильные. Метод определения стойкости к истиранию».

Наибольшей стойкостью к истиранию обладает ткань Томбой, имеющая большую линейную плотность нитей основы и утка, а наименьшую – ткань Балтика, выработанная с наименьшей плотность ткани.

После воздействия растворителя стойкость к истиранию ткани снижается.

В табл. 3 приведены результаты определения стойкости к истиранию тканей специального назначения при истирании корундом.

Таблица 2 – Изменение стойкости к истиранию серошинельным сукном тканей специального назначения после стирок и опытной носки, циклы

Рип розпойотрия	Наименование ткани						
Вид воздействия	Томбой	Премьер Standard 250	Стимул-240	Грета	Балтика	ТЕМП-1	
Стирки	Стойкость к истиранию						
0	25460	15540	13146	18578	9000	15400	
1	20497	11498	8940	13664	5691	10498	
5	20061	9302	5497	12873	4601	10296	
10	18631	8525	5063	12186	2081	9562	
25	17434	7906	4443	11545	567	8293	
50	17179	6479	4256	9934	403	6702	
Опытная носка			Стойкость к ист	тиранию			
1 мес.	20398	11389	8867	13436	6535	10356	
6 мес.	17536	7879	5769	11900	1805	8776	
12 мес.	17067	6396	4176	9853	536	6557	

Витебск 2013 111

Таблица 3 – Изменение стойкости к истиранию корундом тканей специального назначения после стирок и опытной носки, циклы

	Наименование ткани						
Вид воздействия	Томбой	Премьер Standard 250	Стимул-240	Грета	Балтика	ТЕМП-1	
Стирки	Стойкость к истиранию						
0	13762	8400	7106	10042	4865	8324	
1	11739	6606	5346	7973	3245	6513	
5	10589	5891	4453	7116	2820	5871	
10	9268	5092	3462	6205	1430	4921	
25	8006	3969	3201	5511	859	4133	
50	6442	2621	1827	3855	163	2700	
Опытная носка	Стойкость к истиранию						
1 мес.	11906	6539	5504	8222	3042	6592	
6 мес.	8969	4478	3496	6348	1187	4895	
12 мес.	7130	2962	2095	4312	256	3025	

В табл. 4 приведены результаты определения стойкости к истиранию тканей специального назначения после обработки растворителем № 646.

Таблица 4 – Изменение стойкости к истиранию серошинельным сукном тканей специального назначения после стирок и опытной носки, циклы

после стирок и опытной	поски, циклы						
	Наименование ткани						
Вид воздействия	Томбой	Премьер Standard 250	Стимул- 240	Грета	Балтика	ТЕМП-1	
Стирки		Стойкость к истиранию					
0	25460	15540	13146	18578	9000	15400	
1	25186	16187	13629	18353	10380	15187	
5	24750	13991	10186	17562	9290	14985	
10	23320	13214	9752	16875	6770	14251	
25	22123	12595	9132	16234	5256	12982	
50	21868	11168	8945	14623	4286	11391	
Опытная носка		Стойкость к истиранию					
1 мес.	25087	16078	13556	18125	10224	15045	
6 мес.	22225	12568	10458	16589	5494	13465	
12 мес.	21756	11085	8865	14542	4157	11246	

Испытания проводятся на приборе ИТ-3M-1 в соответствии с ГОСТ 18976—73 «Ткани текстильные. Метод определения стойкости к истиранию».

В табл. 5 приведены результаты определения стойкости к истиранию тканей специального назначения.

Таблица 5 – Изменение стойкости к истиранию корундом тканей специального назначения после стирок и опытной носки, циклы

опытной носки, циклы							
	Наименование ткани						
Вид воздействия	Томбой	Премьер Standard 250	Стимул- 240	Грета	Балтика	ТЕМП-1	
Стирки		Стойкость к истиранию					
0	13762	8400	7106	10042	4865	8324	
1	13107	7974	6714	9341	4613	7881	
5	11957	7259	5821	8484	4188	7239	
10	10636	6460	4830	7573	2798	6289	
25	9374	5337	4569	6879	2227	5501	
50	7810	3989	3195	5223	1531	4068	
Опытная носка		Стойкость к истиранию					
1 мес.	13274	7907	6872	9590	4410	7960	
6 мес.	10337	5846	4864	7716	2555	6263	
12 мес.	8498	4330	3463	5680	1624	4393	

Корунд является более жестким абразивом, поэтому набухание волокон и изменение толщины в процессе стирок и опытной носки не сказывается на стойкости к истиранию. Стойкость к истиранию специальных тканей корундом в 2,5 раза ниже стойкости к истиранию серошинельным сукном.

Наибольшей стойкостью к истиранию обладает ткань Томбой, имеющая большую линейную плотность нитей основы и утка, а наименьшую – ткань Балтика, выработанная с наименьшей плотность ткани. Ткань Балтика больше набухает в процессе стирок и опытной носки, так как выработана из 100% ХЛ, поэтому в начальный период стирок и опытной носки стойкость к истиранию не значительно увеличивается, а потом снижается. То есть сначала происходит увеличение толщины и уплотнение структуры ткани, а потом ее разрушение от стирок и опытной носки. Аналогичное явление происходит и у тканей Премьер Standard 250 и

112 Витебск 2013

Стимул-240, выработанных большим содержанием хлопка. Менее всего набухает ткань Томбой, содержащая 67 % ПЭ, 33 % ХЛ, поэтому у данной ткани стойкость к истиранию уменьшается после стирок и опытной носки. Стойкость к истиранию тканей Грета и ТЕМП-1 также уменьшается, что связано с наличием большого количества полиэфира, который не набухает.

УДК 677.074

АНАЛИЗ СТРУКТУРНЫХ ХАРАКТЕРИСТИК И ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ КАМВОЛЬНЫХ КОСТЮМНЫХ ТКАНЕЙ

Лобацкая Е.М., доц., Петрова Р.С., асс., УО «Витебский государственный технологический университет», г. Витебск, Республика Беларусь

Выбор материалов для швейных изделий — одна из важных систем швейного производства работа, которой в значительной мере определяет качество швейных изделий, надежность и эффективность работы всей системы. Качество продукции и в частности швейных изделий существенно зависит не только от квалификации художников модельеров, конструкторов и технологов, но так же от грамотно подобранных материалов в пакет швейного изделия, их расцветки и структуры. Поэтому особое значение приобретает научно обоснованный выбор материалов на швейное изделие.

В работе был проведен анализ структурных характеристик и физико-механических свойств костюмных тканей импортного и отечественного производства, различного сырьевого состава.

В таблице 1 представлены данные основных структурных характеристик, изученных образцов. При анализе проводилось определение сырьевого состава, вида переплетения, линейной плотности нитей основы и утка, плотности нитей в ткани и поверхностной плотности.

При анализе данных образцов, установлено, линейная плотность по основе и утку в различных материалах изменяется в пределах от 25 до 49 текс; плотность нитей — от 200 до 780 нитей на 100 мм; поверхностная плотность от 181 до 328 г/m^2 . Из вышесказанного можно сделать вывод, что исследуемые ткани относятся к камвольным, которые характеризуются гладкой поверхностью, открытым ткацким рисунком, четкой и выразительной фактурой. Это наиболее легкие и тонкие шерстяные ткани, с поверхностной плотностью $150-400 \text{ г/m}^2$.

Проведенные исследования показали, что образец №5, который по внешнему виду напоминает ткань с применением лайкры, на самом деле не содержит данное волокно, а имеет высокую растяжимость за счет использования текстурированных полиэфирных нитей в основе и утке.

Основные виды переплетений, используемых в данных образцах: саржевое, мелкоузорчатое, образец № 3 имеет полуторолойное переплетение.

На следующем этапе были проведены исследования физико-механических свойств всех образцов по следующим показателям: разрывное усилие, разрывное удлинение, жесткость, несминаемость, усадка по основе и утку.

Таблица 1 – Структурные характеристики образцов тканей

1 801	таолица т – структурные характеристики ооразцов тканей								
№ об- раз-	Сырьевой состав		Линейная плотность нитей, текс		Плотность нитей на 100 мм, н/100 мм		Поверх- ностная плотность,		
ца	основы	утка	основы	утка	основы	утка	г/м ²		
1	шерсть 67 % лавсан 33 %	шерсть 50 % лавсан 50 %	44	40	460	230	280		
2	шерсть 67 % лавсан 33 %	шерсть 67 % лавсан 33 %	38	32	360	260	208		
3	шерсть 60 % нитрон 30 % вискоза 10 %	шерсть 60 % нитрон 30 % вискоза10 %	29	25	780	340	328		
4	шерсть 80 % нитрон 20 %	шерсть 80 % нитрон 20%	33	35	320	200	181		
5	лавсан 80 % шерсть20 %	лавсан 80 % шерсть 20 %	49	43	450	300	320		

Определение указанных характеристик проводилось в лаборатории материаловедения кафедры ткачества УО « ВГТУ». В таблице 2 представлены данные по исследованию физико-механических характеристик тканей.

Костюмные полушерстяные ткани занимают большой удельный вес в выпуске всех тканей, так как они имеют красивый внешний вид, обладают повышенной износостойкостью и формоустойчивостью.

Полушерстяные ткани различают содержанием шерсти и вводимых дополнительно волокон (вискозное, капроновое, лавсановое и т. д.), видами этих волокон, способом их введения. Содержание шерсти в полушерстяных тканях может быть от 20 % до 90 %. Условно можно выделить ткани с малым (до 40 %), средним (40 - 70 %) и большим (свыше 70 %) содержанием шерсти.

Витебск 2013 113