

Витебск ВГТУ 2009

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ "ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ"

КАЛИНИН А.А. ПЕТУХОВ В.В.

Build CKANA TOC КОЛЕБАНИЯ УПРУГОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ

КУРС ЛЕКЦИЙ

для студентов специальности 1-360801 "Машины и аппараты легкой, текстильной промышленности и бытового обслуживания" δyn, Onormue Cammer Manseocarter VHMBEOCATER дневной формы обучения

> ВИТЕБСК 2009

УДК 534.121 ББК 22.323 К17

Рецензент :

Сункуев Б.С., доктор технических наук, заведующий кафедрой "Машины и аппараты лёгкой промышленности"

Рекомендовано в качестве учебного пособия редакционно-издательским советом УО"ВГТУ", протокол № <u>9</u> от 29.12.2008.

Калинин, А.А., Петухов, В.В. Колебания упругой системы с двумя степенями свободы : курс лекций / А.А. Калинин, В.В. Петухов – Витебск: Berthins 14 Tethonc УО"ВГТУ", 2009. – 69с.

ISBN 978-985-481-138-3

В курсе лекций рассмотрены свободные затухающие и вынужденные колебания упругой системы с одной степенью свободы и системы с конечным числом степеней свободы. Приведено описание расчетно-графической работы, выполняемой студентами специальности 1-360801 "Машины и аппараты лёгкой, текстильной промышленности и бытового обслуживания".

> УДК 534.121 ББК 22.323 К 17

ISBN 978-985-481-138-3

© Калинин А.А., Петухов В.В.,2009 © УО"ВГТУ", 2009

Содержание

Введение	•••••
Лекция 1	••••••
1. Колебания упругой системы с одной степенью свобо)ды
1.1.Свободные колебания	••••••
1.2.Затухающие колебания	•••••
Лекция 2	••••••
1.3.Вынужденные колебания	
Лекция 3	
1.4.Учет массы упругих элементов	
Лекция 4	ر
2.Колебания стержневой системы с конечным числом	степеней
свободы	,
2.1.Свободные колебания	/
Лекция 5	·
2.2.Уравнения Лагранжа	
Лекция 6	••••••••••••••••••
2.3.Учет массы гибких элементов стержневой системы	
Лекция 7	•••••••••••••••••••••••
3.Пример расчетно-графической работы	•••••••••••••••••••••••
3.1.Задание	2
3.2. Геометрические характеристики сечений	2
3.3.Характеристики инертности стержней	2
3.4.Построение упрощенной модели	4
3.5.Уравнение упругой линии стержней АВ и CD	
3.6.Потенциальная энергия упругой деформации	
3.7.Кинетическая энергия системы	
3.8.Уравнения Лагранжа	5
3.9.Частотное уравнение	<u> </u>
Лекция 8	
3.10.Учет массы гибких стержней АВ и CD	
Лекция 9	
4. Вынужденные колебания стержневой системы	
5. Задание к расчетно-графической работе	

Введение

С основами теории колебания студенты-механики познакомились в курсах математики, физики и теоретической механики. Тем не менее, ограничиваясь лишь изучением механических колебаний упругих систем при линейной восстанавливающей силе, считаем необходимым напомнить основные положения теории колебаний.

В предлагаемом курсе лекций рассмотрены свободные, затухающие и вынужденные колебания системы с одной степенью свободы и системы с конечным числом степеней свободы. При исследовании колебаний стержневых систем рассмотрено построение расчетной схемы на базе упрощенной модели системы, а также учет массы упругих элементов.

Студенты специальности 1-360801 "Машины и аппараты легкой, текстильной промышленности и бытового обслуживания" в четвертом семестре на базе одного задания выполняют три расчетно-графические работы по исследованию колебаний конструкции, схема которой принципиально схожа со схемой корпуса швейного полуавтомата.

В первой расчетно-графической работе определяются необходимые характеристики жесткости элементов конструкции и характеристики их инертности. По результатам вычислений строится упрощенная модель конструкции и вводятся обобщенные координаты.

Во второй расчетно-графической работе по введенным обобщенным координатам составляются уравнения упругой линии гибких стержней и определяются кинетическая энергия системы и потенциальная энергия упругой деформации.

В третьей расчетно-графической работе составляются уравнения Лагранжа второго рода и частотное уравнение, находятся резонансные частоты и строятся главные формы колебаний.

Приводится пример выполнения расчетно-графической работы с краткими пояснениями.

Лекция 1 1. КОЛЕБАНИЯ УПРУГОЙ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

1.1. Свободные колебания

Наиболее простым примером колебательного движения является прямолинейное движение материальной точки при восстанавливающей силе, пропорциональной отклонению точки от положения равновесия (рис. 1.1)

Физическая природа восстанавливающей силы может быть различной. Например, таковой может являться реакция невесомой упругой связи. Тогда коэффициент пропорциональности С характеризует жесткость этой связи, т.е. он равен силе, которую нужно приложить к связи для того, чтобы получить перемещение материальной точки, равное единице.

Дифференциальное уравнение движения материальной точки имеет вид

$$m = -cx,$$

 $k^{2} k = 0$.

или

где

$$k^2 = \frac{c}{m}$$

OTOTAL CKMM YH Общее решение уравнения (1.1) представляется в виде

$$x = C_1 \cos kt + C_2 \sin kt.$$

(1.3)

(1.1)

(1.2)

Постоянные C_1 и C_2 зависят от начальных условий, то есть от начального положения материальной точки и от ее начальной скорости. Они определяются координатой x и значением производной **ж**в момент времени $t_0 = 0$.

$$x_0 = x(0);$$
 $V_0 = \mathcal{K}(0).$

Простой подстановкой найдем

$$C_1 = x_0;$$
 $C_2 = \frac{V_0}{k}$

Теперь общее решение (1.3) представляется в виде

$$x = x_0 \cos kt + \frac{V_0}{k} \sin kt$$

Рис 1.3

На рисунке 1.3 показано положение системы в текущий момент t. При равномерном вращении системы с угловой скоростью, равной k, угол поворота ее j = kt.

Проекция вектора A на ось x равна сумме проекций на ось x ее составляющих

$$A_x = C_{1x} + C_{2x} = C_1 \cos kt + C_2 \sin kt.$$

Это выражение совпадает с выражением (1.3). В то же время

$$x = A_x = A\sin(kt + j_0). \tag{15}$$

В некоторых случаях исследование колебательного движения удобнее производить с помощью выражения (1.5).

Коэффициент A равен наибольшему значению координаты x, т.е. координате x при наибольшем отклонении материальной точки от положения равновесия. Это есть амплитуда колебаний.

Амплитуда колебаний зависит от начальных условий (x_0, V_0) и параметра k^2 , а значит от жесткости упругой связи C и инертности колеблющейся точки.

Аргумент ($kt + j_0$) называется фазой колебаний, а j_0 - начальной фазой. Время одного оборота вектора А называется периодом колебаний

$$T = \frac{2p}{k}.$$

Период колебаний равен промежутку времени, по истечении которого движение точки полностью повторяется. Величина, обратная периоду колебаний, называется частотой колебаний

$$g=\frac{l}{T}.$$

Она измеряется герцами – числом колебаний за одну секунду.

Параметр k, равный угловой скорости вращения системы векторов, изображенных на рисунке 1.3, называется круговой (циклической) частотой. Она измеряется числом радиан в секунду и равна числу колебаний за 2*p* секунд.

В курсе сопротивления материалов исследуется не столько движение материальной точки, сколько состояние упругой связи. Исследуя состояние упругой связи уравнение (1.1) можно получить иным путем.

Упругое перемещение и при статическом нагружении упругой системы силой f равно

$$u=d_{11}f.$$

Здесь d_{11} - отклонение материальной точки от положения равновесия под действием силы, равной единице.

Теперь воспользуемся принципом Даламбера и положим

$$f = -m \mathbf{k}$$

Тогда

(1.6)

или

$$\mathbf{a} + \frac{1}{d_{11}m}u = 0.$$

 $u = d_{11}(-m \mathbf{k})$

CKMM YHMBCK Это уравнение совпадает с уравнением (1.1). Таким образом, циклическая частота свободных колебаний определяется по формуле

$$k^2 = \frac{1}{d_{11}m}.$$
(1.7)

Эта формула практически не отличается от формулы (1.2), так как жесткость С и единичное перемещение связаны соотношением

$$c=\frac{1}{d_{11}}.$$

Тем не менее, такой подход к составлению уравнений колебаний во многих случаях оказывается более удобным, нежели при использовании жесткости **VПрУ**ГОЙ СВЯЗИ.

1.2. Затухающие колебания

При колебаниях реальной конструкции всегда существуют силы, которые препятствуют движению, что приводит к постепенному уменьшению амплитуды и затуханию колебаний.

К силам, препятствующим движению, следует отнести силы трения в кинематических парах, силы сопротивления воздуха или вязкой среды, а также внутренние силы неупругого сопротивления. По гипотезе Фойгта для учета внутренних сил сопротивления движению следует рассматривать материал колеблющейся балки как упруго вязкий. Напряжения в нем зависят не только от деформации е, но и от скорости изменений деформации.

$$s = e\mathbf{E} + c\mathbf{E}\frac{\partial e}{\partial t}.$$

Здесь С - коэффициент вязкого трения. По гипотезе Фойгта силы внутреннего сопротивления приводятся к внешней силе

$$R = -m \frac{du}{dt}$$
.
уравнение (1.6) принимает вид

С учетом силы R уравнение (1.6) принимает вид

$$u = d_{11}(f + R) = d_{11}(-m - m).$$
 (1.8)
Преобразуем уравнение (1.8) к виду
 $m + 2nk + k^2 u = 0.$ (1.9)

Преобразуем уравнение (1.8) к виду

$$\mathbf{k} + 2n\mathbf{k} + k^2 u = 0.$$

(1.9)

3десь $n = \frac{m}{2m}$ - параметр, зависящий от коэффициента вязкого трения, $k^2 = 1/d_{11}m$ - значение циклической частоты колебаний при отсутствии сил сопротивления. Общее решение уравнения (1.9) представляется в виде

$$u = e^{-nt} \left(c_1 e^{\sqrt{n^2 - k^2}t} + c_2 e^{-\sqrt{n^2 - k^2}t} \right)$$
(1.10)

При $n \ge k$ (случай большего сопротивления) имеет место апериодическое затухающее движение.

И лишь в случае n < k движение носит колебательный характер, хотя и не является периодическим.

С помощью обозначения

$$k_1^2 = k^2 - n^2$$

выражение (1.10) можно представить в виде

$$u = e^{-nt} (c_1 \cos k_1 t + c_2 \sin k_1 t)$$

или

$$u = e^{-nt} A \sin(k_1 t + d).$$
(1.11)

По выражению (1.11) видно, что через промежуток времени, равный p/k_1 , система проходит через состояние равновесия. Этим объясняется колебательный характер движения.

Величина, равная

$$T_{I} = \frac{2p}{k_{I}} = \frac{2p}{\sqrt{k^{2} - n^{2}}},$$
(1.12)

условно называется периодом затухающих колебаний.

Формула (1.12) показывает, что период затухающих колебаний больше, чем период свободных колебаний системы при отсутствии сопротивления движению.

Множитель Ae^{-nt} показывает, что последовательные максимальные отклонения системы от положения равновесия с течением времени уменьшаются. При этом отношение

$$h = \frac{u(t+T_1)}{u(t)} = \frac{e^{-n(t+T_1)}A}{e^{-nt} \cdot A} \cdot \frac{\sin(k_1t+k_1T_1+g)}{\sin(k_1t+g)} = e^{-nT_1}$$

не зависит от времени *t*. Величина *h* называется декрементом затухающих колебаний, а показатель степени *nT*₁ - логарифмическим декрементом.

Лекция 2 1.3. Вынужденные колебания

Колебания упругой системы, которые вызываются и поддерживаются возмущающими силами, заданными в виде явных функций времени, называются вынужденными.

Физическая природа таких сил весьма разнообразна. Разнообразны и задающие их функции. Они могут быть как периодическими, так и случайными функциями времени. Наиболее часто на практике встречаются возмущающие силы, меняющиеся периодически.

Возможно и кинематическое возбуждение колебаний.

Рассмотрим действие силы, изменяющейся по гармоническому закону

$$P = P_0 \sin wt. \tag{1.13}$$

Уравнение (1.6) принимает вид

$$u = \boldsymbol{d}_{11} \left(-m\boldsymbol{k} + P \sin \boldsymbol{w} \right), \tag{1.14}$$

или

$$\mathbf{A} + \frac{m}{m} \mathbf{A} + \frac{1}{d_{11}m} u = \frac{P}{m} \sin wt.$$

При введенных ранее обозначениях

$$2n = \frac{m}{m}, \qquad k^2 = \frac{1}{d_{11}m}$$

уравнение (1.14) принимает вид

$$\mathbf{k} + 2n\mathbf{k} + k^2 u = \frac{P}{m} \sin wt.$$
(1.15)

Полученное дифференциальное уравнение является неоднородным (с правой частью). Полное решение такого уравнения, как известно, состоит из решения *u*₀ однородного уравнения

$$\mathbf{k} + 2n\mathbf{k} + k^2 u_0 = 0 \tag{1.16}$$

и частного решения u^* исходного неоднородного уравнения (1.15)

$$u = u_0 + u_{\odot}^*$$

Однородное уравнение (1.16) совпадает с уравнением (1.9), описывающим затухающие колебания с частотой

$$k_1 = \sqrt{k^2 - n^2}.$$

Представим частное решение неоднородного уравнения (1.15) в виде $u^* - (B + Dt) \sin(ut + \sigma)$

$$u = (B + Dt) \sin(wt + g),$$
 (1.17)

где *B*,*D*,*g* - искомые постоянные.

Подстановка решения (1.17) в уравнение (1.15) приводит к четырем алгебраическим уравнениям:

$$\begin{pmatrix} k^2 - w^2 \end{pmatrix} D = 0; 2nwD = 0; \langle k^2 - w^2 \rangle B + 2nD = \frac{P}{m} cosg; 2nwB + 2wD = -\frac{P}{m} sing.$$
 (1.18)

Рассмотрим наиболее общий случай, при котором частота возмущения W отлична от частоты k.

Из первого уравнения системы (1.18) следует D = 0, а третье и четвертое уравнения принимают вид

$$(k^{2} - w^{2})B = \frac{P}{m}\cos g;$$

$$2nwB = -\frac{P}{m}\sin g.$$
 (1.19)

Отсюда Склич

$$B = \frac{P}{mk^2 \sqrt{\left(1 - \frac{w^2}{k^2}\right)^2 + 4\frac{n^2}{k^2} \cdot \frac{w^2}{k^2}}}.$$
(1.20)

Заметим, что k в формуле (1.20) – это частота свободных колебаний системы при отсутствии сопротивления движению.

 $B = \frac{P}{m\sqrt{(k^2 - w^2)^2 + 4n^2w^2}},$

Угол сдвига фаз *g* определяется по одному из уравнений (1.19), или по формуле

$$tgg = -\frac{2nW}{k^2 - W^2}.$$
 (1.21)

Полное решение уравнения (1.15) теперь имеет вид

$$u = Ae^{-nt} \sin(k_1 t + d) + B\sin(wt + g).$$
(1.22)

Формула (1.22) показывает, что упругая система одновременно участвует в двух колебательных движениях. Первое слагаемое выражения (1.22) описывает собственные затухающие колебания.

В отличие от колебаний, рассмотренных в предыдущем разделе, эти колебания имеют место и при нулевых начальных условиях, ибо они зависят не 1890 (1.23) только от начальных условий, но и от возмущающей силы.

Пользуясь начальными условиями

$$u(0) = u_0 \quad \mathsf{M} \quad u(0) = V_0,$$

получим два уравнения

$$A\sin d = u_0 - B\sin g;$$
$$A\cos d = \frac{1}{k_1} [V_0 + nu_0 - B(w\cos g + n\sin g)].$$

По уравнениям (1.23) видно, что постоянные A и d, характеризующие затухающие колебания, зависят от угла сдвига фаз g и величины B и при нулевых начальных условиях определяются из уравнений

$$A \sin d = -B \sin g;$$

$$A\cos d = -\frac{B}{k_1} (w\cos g + n\sin g).$$

Второе слагаемое формулы (1.22) характеризует установившиеся вынужденные колебания с частотой, равной частоте возмущающей силы, и с амплитудой *B*,

Принимая во внимание соотношение

$$k^2 = \frac{1}{d_{11}m},$$

представим амплитуду В в следующем виде:

$$B = \frac{d_{11}P}{\sqrt{\left(1 - \frac{w^2}{k^2}\right)^2 + 4\frac{n^2}{k^2} \cdot \frac{w^2}{k^2}}}.$$
(1.24)

Произведение $d_{11}P$ представляет собой перемещение массы m под действием силы P, равной амплитуде возмущающей силы, приложенной статически

$$d_{11}P = u_{cm}.$$

Таким образом, амплитуда вынужденных колебаний равна

$$B = u_{cm}b, \tag{1.25}$$

где

$$b = \frac{1}{\sqrt{\left(1 - \frac{w^2}{k^2}\right)^2 + 4\frac{n^2}{k^2} \cdot \frac{w^2}{k^2}}}.$$
 (1.26)

Коэффициент *b* показывает, во сколько раз амплитуда вынужденных колебаний, то есть наибольшее динамическое перемещение, больше статического перемещения под действием силы, равной *P*. Этот коэффициент называется динамическим, или коэффициентом нарастания колебаний.

Коэффициент b зависит от соотношений W/k и n/k. При совпадении частот W и k упругая система находится в состоянии резонанса. При этом коэффициент b равен

$$b=\frac{k}{2n}.$$

Заметим, что это значение не является максимальным, хотя и близко к нему. Максимальное значение коэффициент b принимает при частоте w возмущающей силы несколько меньшей частоты свободных колебаний k.

Взяв первую и вторую производные по отношению W/k от выражения, стоящего в знаменателе формулы (1.26), получим значение отношения W/k, соответствующее максимальному значению коэффициента b. 5/0

$$\frac{w}{k} = \sqrt{1 - 2\frac{n^2}{k^2}}.$$
(1.27)

После подстановки выражения (1.27) в формулу (1.26) получим

$$max \mathbf{b} = \frac{1}{2\frac{n}{k}\sqrt{1 - \frac{n^2}{k^2}}} = \frac{1}{2\frac{n}{k} \cdot \frac{k_1}{k}}.$$
(1.28)

На рисунке 1.4 показана зависимость коэффициента динамичности от отношения $\frac{w}{k}$ при различных значениях отношения $\frac{n}{k}$. Здесь же штриховой линией соединены максимальные значения b.

При n=0, то есть при ничтожно малом сопротивлении движению, коэффициент b многократно возрастает. Но увеличение b происходит не мгновенно, ибо не может быть бесконечно больших ускорений.

Вернемся к частному решению (1.17) и положим n = 0 в системе (1.18). Второе уравнение системы (1.18) обращается в тождество, остальные уравнения принимают вид

$$(k^{2} - w^{2})D = 0;$$

 $(k^{2} - w^{2})B = \frac{P}{m}cosg;$ (1.29)
 $2wD = -\frac{P}{m}sing.$
вого уравнения следует $D = 0$.
 $cosg = 1$ и
 $B = \frac{P}{m(k^{2} - w^{2})},$
частоты свободных колебаний при $n = 0$, равной

При $W \neq k$ из первого уравнения следует D = 0. Тогда sing = 0, cosg = 1 и

$$B = \frac{P}{m(k^2 - w^2)},$$

или с учетом формулы частоты свободных колебаний при n=0, равно

$$k^2 = \frac{l}{d_n m},$$

Рис 1.4. Частотно-амплитудная диаграмма при различных значениях коэффициента n

Этот же результат получается при подстановке n = 0 в формулу (1.26). Теперь положим в системе (1.29) W = k. Из второго уравнения следует

значит

 $g = \frac{p}{2}$, sing = 1 $D = -\frac{P}{2mW} = -\frac{P}{2mk},$

 $D = -\frac{Pd_{11}}{2k}.$

 $\frac{P}{m}\cos g = 0,$

или

Учитывая соотношение $u_{cm} = d_{11}P$,

получим

 $D = -\frac{u_{cm}}{2k}.$

Таким образом, уравнение установившихся вынужденных колебаний при резонансе имеет вид

$$u = -\frac{u_{cm}}{2k} t \sin\left(kt + \frac{p}{2}\right),$$

или

$$u = -\frac{u_{cm}}{2k}t\cos kt.$$
(1.30)

Как видно, неограниченное возрастание амплитуды колебаний происходит во времени линейно.

Формула (1.21), которую можно записать в виде

показывает, что угол сдвига фаз также зависит от отношений n/k

и w/k Увеличение сопротивления движению при W < k приводит к увеличению угла сдвига фаз. Но при резонансе (w = k),

$$g=\frac{p}{2}$$
.

Если частота возмущения превышает собственную частоту, то угол сдвига фаз будет больше, чем p/2 и увеличение его при возрастании отношения W/k происходит тем медленнее, чем больше сопротивление движению.

Эти зависимости видны на рисунке 1.5.

Рис 1.5 Зависимость угла сдвига фаз γ от частоты возмущения ω и от сопротивления среды

Лекция 3 1.4. Учет массы упругих элементов

В рассмотренных выше задачах полагалось, что масса тела, налагающего упругую связь на материальную точку, пренебрежительно мала. В реальных конструкциях масса пружины или балки может оказаться весьма значительной, сравнимой с массой тела, которое представляется материальной точкой. Пренебрежение инертностью пружины или балки, или иного упругого тела может привести к значительным погрешностям.

Точное решение задачи об исследовании колебаний таких систем оказывается очень громоздким и не всегда возможным. Ведь такая система представляет собой бесконечное множество взаимосвязанных материальных точек с бесконечно малыми массами. Положение такой системы определяется бесконечным множеством координат. Значит такая система имеет бесконечное множество степеней свободы и, следовательно, бесконечное множество собственных частот.

Во многих инженерных задачах оказывается достаточным определение наименьшей собственной частоты, которая называется частотой основного тона. Приближенное значение частоты основного тона может быть найдено с помощью введения некоторых допущений.

Одно из таких допущений предложено Рэлеем. Функция перемещения элементов тела, представляющего упругую связь

$$u = u(z_{,t})$$

заменяется произведением двух функций

$$\boldsymbol{u} = f(\boldsymbol{z})\boldsymbol{j}(\boldsymbol{t}). \tag{1.31}$$

Здесь f(z)- функция продольной координаты элемента упругого тела, характеризующая форму деформированного тела; j(t)- функция времени, которая является переменной обобщенной координатой. Она играет роль переменного масштабного коэффициента.

Рассмотрим применение метода Рэлея на примере задачи о свободных колебаниях консоли, изображенной на рисунке 1.6. К свободному концу консоли прикреплена сосредоточенная масса m_1 . Масса консоли m равномерно распределена по ее длине.

Если пренебречь инертностью консоли, то есть положить m = 0, то частота свободных колебаний консоли равна

$$k^{2} = \frac{1}{d_{11}m} = \frac{3EI}{ml^{3}}.$$
 (1.32)

Такой же результат получим с помощью уравнения

$$\frac{d}{dt}(T+\Pi) = 0, \qquad (1.33)$$

которое выражает закон сохранения полной механической энергии системы.

В уравнении (1.33) Т-кинетическая энергия массы m_1 , равная

$$T = \frac{1}{2}m_1 \mathscr{B}_1^2, \qquad (1.34)$$

П - потенциальная энергия упругой деформации консоли.

Естественно допустить, что форма деформированной безмассовой консоли с сосредоточенной массой m_1 при колебании совпадает с формой консоли, нагруженной сосредоточенной силой. Тогда

$$\Pi = \frac{1}{2} P u_1 = \frac{1}{2} \frac{u_1^2}{d_{11}}.$$
(1.35)

В выражениях потенциальной энергии (1.35) и кинетической энергии (1.34) u_1 и M_1 - координата и скорость сосредоточенной массы m_1 .

После подстановки выражений (1.34) и (1.35) в уравнение (1.33) получим

$$m_I \mathbf{a}_I + \frac{1}{\mathbf{d}_{II}} u_I = 0.$$

Отсюда следует решение (1.32).

Теперь учтем распределенную массу $m \neq 0$. Кинетическая энергия деформированной системы, изображенной на рисунке 1.7,

Рис 1.7

 $T = \frac{1}{2}m_{1}w_{1}^{2} + \frac{1}{2}\int w_{1}^{2} dm.$

При равномерном распределении массы *m* по длине консоли

тогда

$$T = \frac{1}{2}m_{l}\boldsymbol{k}_{l}^{2} + \frac{1}{2}\frac{m}{l}\int_{l}\boldsymbol{k}_{l}^{2}dz.$$
 (1.36)

Представив перемещение произвольного сечения консоли в виде

$$u = f(z)\mathbf{j}(t) = f\mathbf{j} ,$$

$$u_1 = f(z_1)\mathbf{j}(t) = f_1\mathbf{j} .$$

получим

Выражение (1.36) принимает следующий вид

4

$$T = \frac{1}{2}m_1 f_1^2 j \mathbf{k}^2 + \frac{1}{2} \frac{m}{l} j \mathbf{k}^2 \int_l f^2 dz = \frac{1}{2} A j \mathbf{k}^2.$$
(1.37)

Множитель А формулы (1.37) называется инерционным коэффициентом. Он равен

$$A = m_1 f_1^2 + \frac{m}{l} \int_l f^2 dz.$$
 (1.38)

Потенциальную энергию упругой деформации системы найдем с помощью того же представления прогиба произвольного сечения консоли

$$\Pi = \frac{1}{2} EI \int_{l} \left(u'' \right)^{2} dz = \frac{1}{2} EI j^{2} \int_{l} \left(f'' \right)^{2} dz,$$

или

$$\Pi = \frac{1}{2}Bj^{2}.$$
 (1.39)

Множитель В формулы (1.39) называется обобщенным коэффициентом жесткости или квазиупругим коэффициентом.

$$B = EI \int_{l} \left(f^{"} \right)^2 dz. \tag{1.40}$$

Подстановкой выражений (1.37) и (1.39) в уравнение (1.33) получим $A \beta + B j = 0.$

Отсюда частота свободных колебаний консоли $k^{2} = \frac{B}{A} = \frac{EI \int (f'')^{2} dz}{m_{1}f_{1} + \frac{m}{l} \int_{l} f^{2} dz}.$

$$k^{2} = \frac{B}{A} = \frac{EI \int (f'')^{2} dz}{m_{1}f_{1} + \frac{m}{l} \int_{l} f^{2} dz}.$$
(1.41)

В формулах (1.38) и (1.40) f –задаваемая функция. Она назначается исходя из представления нагрузки, которая, будучи приложена статически, придаст продольной оси консоли форму, близкую к форме колеблющейся балки. Таковой нагрузкой может быть, например, сосредоточенная сила, приложенная к массе m_1 , или равномерно распределенная нагрузка.

Положим, что форма колеблющейся консоли близка к форме консоли, изогнутой сосредоточенной силой (рисунок 1.8).

Инерционный коэффициент (1.38)

$$A = m_{I} \left(-\frac{Pl^{3}}{3EI} \right)^{2} + \frac{m}{l} \int_{0}^{l} \frac{P^{2}}{(6EI)^{2}} \left(9l^{2}z^{4} - 6lz^{5} + z^{6} \right) dz =$$

= $\frac{P^{2}l^{6}}{9(EI)^{2}} \left(m_{I} + \frac{33}{140}m \right)$ (1.44)

Обобщенный коэффициент жесткости (1.40)

$$B = EI \int_{0}^{l} \frac{P^{2}}{(EI)^{2}} (z - l)^{2} dz = \frac{P^{2}l^{3}}{3EI}.$$
 (1.45)

$$B = EI \int_{0}^{l} \frac{P^{2}}{(EI)^{2}} (z-l)^{2} dz = \frac{P^{2}l^{3}}{3EI}.$$
(1.45)
Подстановкой выражений (1.44) и (1.45) в формулу (1.41) получим

$$k^{2} = \frac{P^{2}l^{3}}{3EI} \cdot \frac{9(EI^{2})}{P^{2}l^{6} \left(m_{l} + \frac{33}{140}m\right)} = \frac{3EI}{\left(m_{l} + \frac{33}{140}m\right)^{3}}.$$
(1.46)

Инерционный коэффициент (1.38) можно представить в виде

$$A = f_1^2 \left[m_1 + \frac{m}{l} \int_l \left(\frac{f}{f_1} \right)^2 dz \right] = f_1^2 \left(m_1 + m_{np} \right).$$
(1.47)
7)

В формуле (1.47)

$$m_{np} = \frac{m}{l} \int_{l} \left(\frac{f}{f_{1}}\right)^{2} dz.$$
(1.48)

Эта величина представляет собой массу балки, приведенную к сечению, к которому прикреплена сосредоточенная масса m_1 . То есть это такая масса, сосредоточенная в выбранном сечении, кинетическая энергия которой равна кинетической энергии распределенной массы при условии равенства скоростей сечений действительной балки и приведенной.

ALIM BOOCHING Подынтегральное выражение формулы (1.48) по найденным перемещениям (1.42) и (1.43)

$$\left(\frac{f}{f_1}\right)^2 = \left(\frac{3}{2}\frac{z^2}{l^2} - \frac{1}{2}\frac{z^3}{l^3}\right)^2 = \left(1,5a^2 - 0,5a^3\right)^2,$$

где a = z/l.

Приведенная масса консоли

$$m_{np} = \frac{m}{l} \int_{0}^{l} (1.5a^{2} - 0.5a^{3})^{2} \cdot lda = \frac{33}{140}m.$$

Теперь приближенное значение частоты основного тона можно определить, заменив систему, изображенную на рисунке 1.6, моделью, изображенной на рисунке 1.9. Тогда в соответствии с решением (1.32) But Cocking,

Заметим, что, назначая форму упругой линии, то есть построив уравнение (1.42), можно опустить коэффициент перед выражением, стоящим в скобках. Тогда

$$f = -3lz^2 + z^3$$
, $f_1 = -2l^3$.

Инерционный коэффициент (1.38)

$$A = m_1 \cdot 4l^6 + \frac{m}{l} \int_{0}^{l} (9l^2 z^4 - 6lz^5 + z^6) dz =$$

= $m_1 \cdot 4l^6 + \frac{33}{35}ml^6 = 4l^6 \left(m_1 + \frac{33}{140}m\right)$

Обобщенный коэффициент жесткости (1.40)

$$B = EI \int_{0}^{t} 36(z-l)^{2} dz = 12EIl^{3}.$$

По формуле (1.41) получаем тот же результат (1.46):

$$= m_{1} \cdot 4t^{2} + \frac{1}{35}mt^{2} - 4t^{2} \left(m_{1}^{2} + \frac{1}{140}m\right)$$

коэффициент жесткости (1.40)

$$B = EI \int_{0}^{1} 36(z-l)^{2} dz = 12EIl^{3}.$$

...41) получаем тот же результат (1.46):

$$k^{2} = \frac{B}{A} = \frac{12EIl^{3}}{4l^{6} \left(m_{1} + \frac{33}{140}m\right)} = \frac{3EI}{\left(m_{1} + \frac{33}{140}m\right)^{3}}.$$

Лекция 4

2. КОЛЕБАНИЯ СТЕРЖНЕВОЙ СИСТЕМЫ С КОНЕЧНЫМ ЧИС ЛОМ СТЕПЕНЕЙ СВОБОДЫ

2.1. Свободные колебания

Система, состоящая из конечного числа упругих стержней, имеет бесконечное число степеней свободы, поскольку каждый из ее элементов представляет бесконечное множество материальных точек. Приближенное решение задачи можно получить, заменив реальную конструкцию более простой моделью с конечным числом степеней свободы.

Для построения упрощенной модели следует:

а) выделить наиболее массивные элементы конструкции и пренебречь инертностью менее массивных ее частей;

б) выделить наиболее жесткие элементы и пренебречь их деформацией, то есть положить их абсолютно жесткими;

в) пренебречь размерами и вращательным движением малых элементов, то есть заменить их материальными точками.

На рис. 2.1 изображена плоская рама, которая находится в состоянии устойчивого равновесия.

Масса и жесткость стержня CD значительно больше, чем других стержней. Положим стержень CD абсолютно жестким и изобразим деформированную систему, придав ей произвольное перемещение.

При этом учтем, что перемещения, вызванные изгибом стержней AB, BC и DE, значительно превышают перемещения, вызванные их деформациями растяжения-сжатия.

Такая деформированная рама изображена на рисунке 2.2.

Положение системы определяют три обобщенные координаты: горизонтальное и вертикальное перемещения центра масс u_1 , u_2 и угол поворота стержня CD u_3 .

Таким образом, упрощенная модель исходной рамы является системой с тремя степенями свободы. Ее колебательное движение зависит от инертности стержня CD (его массы и момента инерции массы относительно центра масс) и от жесткости стержней AB, BC и DE.

Если один из трех стержней (например, стержень BC) обладает высокой, по сравнению со стержнями AB и DE, жесткостью, то система еще более упростится.

Такая рама изображена на рисунке 2.3. Положение стержня CD определяется теми же координатами u_1, u_2 и u_3 . Но вследствие того, что стержни BC и CD представляют собой единый жесткий элемент конструкции, угол поворота стержня CD такой же, как и угол поворота стержня BC.

Рис. 2.3

Он связан с вертикальным перемещением узла C зависимостью $u_3 = u_2/l$. Значит, независимых координат теперь только две.

Если массы гибких стержней сравнимы с массами жестких элементов конструкции, то пренебрегать их инертностью нельзя. В этом случае необходимо установить форму инерционного перемещения гибкого стержня. Поскольку истинная форма стоячей волны гибкого стержня является неизвестной, ее следует назначить так, чтобы удовлетворялись краевые условия.

Так, сечение A стержня AB может свободно поворачиваться, а сечение B повернуто на угол, равный углу поворота бруса CD. Горизонтальное перемещение этого сечения также может быть выражено через координату u_1 и угол поворота бруса CD.

Рассмотрим модель рамы, изображенную на рисунке 2.4.

Еще раз отметим, что положение системы определяется тремя обобщенными координатами u_1, u_2, u_3 . Деформированное состояние колеблющейся рамы в каждый момент времени идентично состоянию статически уравновешенной системы, нагруженной силами, равными при свободных колебаниях обобщенным силам инерции бруса CD.

На рисунке 2.4 показаны силы инерции бруса CD, приведенные к его центру масс. Горизонтальная и вертикальная составляющие f_1 и f_2 соответствуют обобщенным координатам u_1 и u_2 . f_3 – это главный момент сил инерции бруса CD относительно оси, проходящей через центр масс. Он соответствует угловой координате u_3 .

Для линейно деформируемой системы, каковой и является исследуемая конструкция, полные перемещения сечений (на основании принципа независимости действия сил) определяются как суммы перемещений, вызванных отдельными нагрузками.

$$u_i = \sum_{j=1}^n u_{ij}.$$
 (2.1)

Здесь u_{ij} – перемещение сечения в направлении обобщенной координаты u_i , вызванное силой f_j . Это перемещение равно

$$\boldsymbol{\mu}_{ij} = \boldsymbol{d}_{ij}\boldsymbol{f}_j = \boldsymbol{d}_{ij} \left(-m_j \boldsymbol{k}_j\right). \tag{2.2}$$

 u_i , вызванное единичной силой, приложенной вместо силы t_j . Следует

учесть, что в выражении обобщенной даламберовой силы инерции

$$f_j = -m_j \cdot \mathbf{k}_j$$

*m*_{*j*} не всегда является массой.

Под m_i следует понимать меру инертности бруса в движении, определяемом координатой ^{*и*} *j* · Так, в представлении

$$f_3 = -m_3 \mathbf{k}_3$$

 m_3 есть момент инерции массы бруса CD относительно его центральной оси.

Теперь выражение (2.2) для системы с тремя степенями свободы представляется в виде дифференциальных уравнений

$$u_{1} = d_{11}(-m_{1} \aleph_{1}) + d_{12}(-m_{2} \aleph_{2}) + d_{13}(-m_{3} \aleph_{3});$$

$$u_{2} = d_{21}(-m_{1} \aleph_{1}) + d_{22}(-m_{2} \aleph_{2}) + d_{23}(-m_{3} \aleph_{3});$$

$$u_{3} = d_{31}(-m_{1} \aleph_{1}) + d_{32}(-m_{2} \aleph_{2}) + d_{33}(-m_{3} \aleph_{3}).$$
(2.3)
системы (2.3) разыскивается в виде

$$u_{1} = A_{1} \sin kt + B_{1} \cos kt;$$

$$u_{2} = A_{2} \sin kt + B_{2} \cos kt;$$

$$u_{3} = A_{3} \sin kt + B_{3} \cos kt.$$
(2.4)
циклическая частота колебаний.

(2.4)

Решение системы (2.3) разыскивается в виде

$$u_1 = A_1 \sin kt + B_1 \cos kt;$$

$$u_2 = A_2 \sin kt + B_2 \cos kt;$$

$$u_3 = A_3 \sin kt + B_3 \cos kt.$$

Здесь *k* - циклическая частота колебаний.

После подстановки выражений (2.4) в уравнения (2.3) и несложных преобразований получаются две подобные алгебраические системы относительно неизвестных A_1, A_2, A_3

$$\begin{pmatrix} d_{11}m_1k^2 - 1 \end{pmatrix} A_1 + d_{12}m_2k^2A_2 + d_{13}m_3k^2A_3 = 0; \\ d_{21}m_1k^2A_1 + \begin{pmatrix} d_{22}m_2k^2 - 1 \end{pmatrix} A_2 + d_{23}m_3k^2A_3 = 0; \\ d_{31}m_1k^2A_1 + d_{32}m_2k^2A_2 + \begin{pmatrix} d_{33}m_3k^2 - 1 \end{pmatrix} A_3 = 0$$

$$(2.5)$$

и относительно неизвестных B_1, B_2, B_3

$$\begin{pmatrix} d_{11}m_1k^2 - 1 \end{pmatrix} B_1 + d_{12}m_2k^2B_2 + d_{13}m_3k^2B_3 = 0; \\ d_{21}m_1k^2B_1 + (d_{22}m_2k^2 - 1)B_2 + d_{23}m_3k^2B_3 = 0; \\ d_{31}m_1k^2B_1 + d_{32}m_2k^2B_2 + (d_{33}m_3k^2 - 1)B_3 = 0.$$

$$(2.6)$$

Уравнения (2.5) и (2.6), кроме неизвестных $A_1, A_2, A_3, B_1, B_2, B_3$, содержат неизвестную частоту k. Найти все 7 неизвестных по шести уравнениям нельзя, но частота k может быть определена.

Ненулевое решение системы однородных уравнений (2.5) или (2.6) существует лишь при равенстве нулю определителя системы, то есть при

$$\begin{vmatrix} d_{11}m_1k^2 - 1 & d_{12}m_2k^2 & d_{13}m_3k^2 \\ d_{21}m_1k^2 & d_{22}m_2k^2 - 1 & d_{23}m_3k^2 \\ d_{31}m_1k^2 & d_{32}m_2k^2 & d_{33}m_3k^2 - 1 \end{vmatrix} = 0.$$
(2.7)

Условие (2.7) в развернутом виде представляет собой уравнение третьей степени относительно k^2

$$L_1 k^6 + L_2 k^4 + L_3 k^2 - 1 = 0. (2.8)$$

Здесь

$$L_{1} = (d_{11}d_{22}d_{33} + 2d_{12}d_{23}d_{31} - d_{11}d_{23}^{2} - d_{22}d_{31}^{2} - d_{33}d_{12}^{2})m_{1}m_{2}m_{3};$$

$$L_{2} = (d_{12}^{2} - d_{11}d_{22})m_{1}m_{2} + (d_{23}^{2} - d_{22}d_{33})m_{2}m_{3} + (d_{31}^{2} - d_{33}d_{11})m_{3}m_{1};$$

$$L_{3} = d_{11}m_{1} + d_{22}m_{2} + d_{33}m_{3}$$

Уравнение (2.8) называется частотным. Оно имеет три действительных положительных корня k_1^2 , k_2^2 , k_3^2 . Им соответствуют три значения собственной частоты k_1, k_2, k_3 . Индексы при k подбираются так, чтобы удовлетворялось условие 744

$$k_1 < k_2 < k_3$$

Частота k_1 называется частотой основного тона.

Несколько значений частоты свидетельствуют о том, что колебательный процесс является многочастотным и решение (2.4) теперь представляется в виде

$$u_{i} = \sum_{j=1}^{3} \left(A_{ij} \sin k_{j} t + B_{ij} \cos k_{j} t \right) \qquad i, j = 1, 2, 3.$$

Здесь *i* - номер обобщенной координаты; *j* - номер частоты.

Постоянные А_{ii} и В_{ii} зависят от начальных условий, но каждому значению k_i соответствуют определенные соотношения амплитуд A_{ij} и B_{ij} . При подстановке значение частоты k_i в уравнения (2.5) одно из них представляется линейной комбинацией остальных уравнений, то есть независимых уравнений остается два. Таким образом, две амплитуды выразятся через выбранную одну. Если за основную амплитуду взять амплитуду колебаний первой массы A_{1i} , то получим отношение

$$A_{2j} = n_{2j}A_{1j};$$

 $A_{3j} = n_{3j}A_{1j}.$

Си, Так же

$$B_{2j} = n_{2j}B_{1j};$$

 $B_{3j} = n_{3j}B_{1j}.$

Таковы же и соотношения обобщенных координат

$$u_i^j = A_{ij} \sin k_j t + B_{ij} \cos k_j t,$$

Значит, коэффициенты n_{ij} определяют формы, которые принимает деформированная система при колебаниях с соответствующей частотой k_i . Эти формы называются главными. Истинная мгновенная форма представляется комбинацией главных форм, при которой обобщенные координаты при найденных соотношениях амплитуд

$$u_i = \sum_{j=1}^{3} n_{ij} \left(A_{1j} \sin k_j t + B_{1j} \cos k_j t \right).$$
(2.9)

Если движение системы начинается из состояния покоя, то

$$A_{11} = 0$$
, $A_{12} = 0$ _M $A_{13} = 0$.

Уравнения (2.9) принимают вид

$$u_{1} = B_{11} \cos k_{1}t + B_{12} \cos k_{2}t + B_{13} \cos k_{3}t;$$

$$u_{2} = n_{21}B_{11} \cos k_{1}t + n_{22}B_{12} \cos k_{2}t + n_{23}B_{13} \cos k_{3}t;$$

$$u_{3} = n_{31}B_{11} \cos k_{1}t + n_{32}B_{12} \cos k_{2}t + n_{33}B_{13} \cos k_{3}t.$$
 (2.10)

Подстановка в систему (2.10) t = 0 приводит к системе уравнений относительно амплитуд $B_{11}, B_{12}B_{13}$.

тьно амплитуд
$$B_{11}, B_{12}B_{13}$$
.
 $B_{11} + B_{12} + B_{13} = u_{10};$
 $n_{21}B_{11} + n_{22}B_{12} + n_{23}B_{13} = u_{20};$
 $n_{31}B_{11} + n_{32}B_{12} + n_{33}B_{13} = u_{30}.$
Подобным образом по начальным значениям скоростей V_{10}, V_{20} и V_{30} оп-

ределяются амплитуды A_{11}, A_{12}, A_{13} .

Построим для нашей задачи систему (2.5).

На рисунках (2.5, 2.6 и 2.7) показаны единичные нагрузки, приложенные вместо сил f_i формулы (2.2), и соответствующие им эпюры изгибающих моментов \overline{M}_{i} .

Рис. 2.7

Перемножив по Верещагину эпюры изгибающих моментов, получим

$$EId_{ij} = \overline{M}_{i}\overline{M}_{j}.$$

$$EId_{II} = \overline{M}_{I}\overline{M}_{I} = \left(\frac{1}{2}\frac{l}{4}l\right) \cdot \frac{2}{3}\frac{l}{4} + \left(\frac{1}{2}l \cdot l\right) \cdot \frac{2}{3}l + \frac{1}{2}l \cdot l\left(\frac{2}{3}l + \frac{1}{3} \cdot \frac{3l}{4}\right) + \frac{1}{2}\frac{3}{4}l \cdot l\left(\frac{1}{3}l + \frac{2}{3} \cdot \frac{3l}{4}\right) = \frac{9}{8}l^{3};$$

$$EId_{12} = \overline{M}_{1} \cdot \overline{M}_{2} = -\left(\frac{1}{2}l \cdot \frac{l}{4}\right) \cdot \frac{2}{3}\frac{1}{2} - \left(\frac{1}{2}l \cdot l\right) \cdot \frac{1}{3}\frac{1}{2} - \left(\frac{1}{2}\frac{3}{4}l \cdot l\right) \cdot \frac{2}{3}\frac{1}{2} = -\frac{l^{3}}{4};$$

$$EId_{13} = \overline{M}_{1} \cdot \overline{M}_{3} = -\left(\frac{l}{2} \cdot l \cdot \frac{l}{4}\right) \cdot \frac{2}{3} \cdot \frac{l}{2} + \left(\frac{1}{2}l \cdot l\right) \cdot \frac{1}{3} \cdot \frac{1}{2} + \left(\frac{1}{2}\cdot\frac{3}{4}l \cdot l\right) \cdot \frac{2}{3} \cdot \frac{1}{2} = -\frac{l^{2}}{6};$$

$$EId_{22} = \left(\frac{1}{2}\cdot\frac{1}{2}\cdot l\right) \cdot \frac{2}{3} \cdot \frac{l}{2} \cdot 2 = \frac{l^{3}}{6}; \quad EId_{23} = 0;$$

$$EId_{33} = \left(\frac{1}{2}\cdot\frac{1}{2}\cdot l\right) \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot 2 = \frac{l}{6}.$$

$$EId_{31} = EId_{12} = -\frac{l^{3}}{4}; \quad EId_{31} = EId_{13} = -\frac{l^{2}}{6};$$

$$EId_{22} = EId_{12} = 0.$$

При перемножении эпюр принималось во внимание одинаковая жесткость сечений EI участков AB, BC и DE, а также абсолютная жесткость бруса *CD* (эпюры изгибающего момента на участке *CD* изображены штриховой линией). HHABOOCHTOT

С учетом найденных значений d_{ij} и обобщенных масс

$$m_1 = m, \qquad m_2 = m, \qquad m_3 = \frac{ml^2}{12}$$

уравнения (2.5) имеют вид

$$\left(\frac{9l^3}{8EI}mk^2 - 1\right)A_1 - \frac{l^3}{4EI}mk^2A_2 + \frac{l^2}{6EI}\frac{ml^2}{12}A_3 = 0$$

$$-\frac{l^3}{4EI}mk^2A_1 + \left(\frac{l^3}{6EI}mk^2 - 1\right)A_2 + 0 = 0;$$

$$\frac{l^2}{6EI}mk^2A_1 + 0 + \left(\frac{l}{6EI}\frac{ml^2}{12}k^2 - 1\right)A_3 = 0.$$
(2.12)

Обозначим

$$k^2 \frac{ml^3}{72EI} = z.$$
 (2.13)

Система (2.12) принимает следующий вид:

$$(81z-1)A_1 - 18zA_2 + zA_3l = 0;$$

$$-18zA_1 + (12z-1)A_2 + 0 = 0;$$

$$12zA_1 + 0 + (z-1)A_3l = 0;$$
По определителю системы (2.14)

$$\begin{vmatrix} 84z - 1 & -18z & z \\ -18z & 12z - 1 & 0 \\ 12z & 0 & z - 1 \end{vmatrix}$$
получаем частотное уравнение

$$\begin{vmatrix} 84z - 1 & -18z & z \\ -18z & 12z - 1 & 0 \\ 12z & 0 & z - 1 \end{vmatrix}$$

получаем частотное уравнение

$$504z^3 - 729z^2 + 94z - 1 = 0. (2.15)$$

Корни уравнения (2.15)

$$z_1 = 0,0117;$$
 $z_2 = 0,1301;$ $z_3 = 1,305.$

Им соответствуют частоты

$$k_1 = 0.918 \sqrt{\frac{EI}{ml^3}}; k_2 = 3.06 \sqrt{\frac{EI}{ml^3}}; k_3 = 9.69 \sqrt{\frac{EI}{ml^3}}$$

Для построения главных форм колебаний воспользуемся вторым и третьим уравнениями системы (2.14). 2

При
$$z = z_1 = 0,0117$$
 они принимают вид
 $-0,2106 A_{11} - 0,8596 A_{21} = 0;$
 $0,1404 A_{11} - 0,9883 A_{31} l = 0.$
Отсюда $A_{21} = -0,245 A_{11}, \ lA_{31} = 0,142 A_{11}.$
При $z = z_2 = 0,1301$
 $-2,342 A_{12} + 0,5612 A_{22} = 0;$
 $1,561 A_{12} - 0,870 l A_{32} = 0.$
 $A_{22} = 4,17 A_{12}, \ lA_{32} = 1,79 A_{12}.$

Отсюда

$$A_{21} = -0.245A_{11}, \ lA_{31} = 0.142A_{11}$$

При

$$z = z_2 = 0,1301$$

-2,342A₁₂ + 0,5612A₂₂ = 0;
1,561A₁₂ - 0,870lA₃₂ = 0.
A₂₂ = 4,17A₁₂, lA₃₂ = 1,79A₁₂

При

$$z = z_3 = 1,305$$

-23,49A₁₃ + 14,66A₂₃ = 0;
15,66A₁₃ + 0,305A₃₃l = 0.
A₂₃ = 1,60A₁₃, lA₃₃ = -51,3A₁₃.

Заметим, что главные формы обладают свойством ортоганальности. Что это значит? Для каждой главной формы, соответствующей частоте k_i , можно построить вектор F_i , компоненты которого равны

$$F_{jl} = \sqrt{m_l} A_{lj}.$$

То есть

$$F_{I}(\sqrt{m_{1}}A_{11}; \sqrt{m_{2}}A_{21}; \sqrt{m_{3}}A_{31});$$

$$F_{I}(\sqrt{m_{1}}A_{12}; \sqrt{m_{2}}A_{22}; \sqrt{m_{3}}A_{32});$$

$$F_{J}(\sqrt{m_{1}}A_{13}; \sqrt{m_{2}}A_{23}; \sqrt{m_{3}}A_{33}).$$

Положив $A_{lj} = l$, получим более простую систему векторов f_j .

$$\begin{array}{c} \mathbf{f}_{1}\left(\sqrt{m_{1}}; \sqrt{m_{2}}n_{21}; \sqrt{m_{3}}n_{31}\right); \\ \mathbf{f}_{2}\left(\sqrt{m_{1}}; \sqrt{m_{2}}n_{22}; \sqrt{m_{3}}n_{32}\right); \\ \mathbf{f}_{3}\left(\sqrt{m_{1}}; \sqrt{m_{2}}n_{23}; \sqrt{m_{3}}n_{33}\right). \end{array}$$

Признаком ортогональности векторов является равенство нулю их скалярного произведения, то есть

или

$$\mathbf{r}_{j} \cdot \mathbf{r}_{s} = \sum_{s=1}^{n} m_{p} n_{pj} n_{ps}$$

$$\begin{array}{c} \mathbf{f}_{1}\left(\sqrt{m} ; -0.245\sqrt{m}; 0.142\frac{1}{l}\sqrt{\frac{ml^{2}}{12}}\right); \\ \mathbf{f}_{2}\left(\sqrt{m} ; 4.17\sqrt{m} ; 1.79\frac{1}{l}\sqrt{\frac{ml^{2}}{12}}\right); \\ \mathbf{f}_{3}\left(\sqrt{m} ; 1.60\sqrt{m}; -51.3\frac{1}{l}\sqrt{\frac{ml^{2}}{12}}\right). \end{array}$$

Скалярные произведения

$$\begin{aligned} \mathbf{r} & \mathbf{r} \\ f_1 \cdot f_2 &= m \bigg(1 \cdot 1 - 0,245 \cdot 4,17 + \frac{0,142}{l} \cdot \frac{1,79}{l} \cdot \frac{l^2}{12} \bigg) = -0,0005m; \\ \mathbf{r} & \mathbf{r} \\ f_2 \cdot f_3 &= m \bigg(1 \cdot 1 + 4,17 \cdot 1,60 - \frac{1,79}{l} \cdot \frac{51,3}{l} \cdot \frac{l^2}{12} \bigg) = 0,019m; \\ \mathbf{r} & \mathbf{r} \\ f_3 \cdot f_1 &= m \bigg(1 \cdot 1 - 1,60 \cdot 0,245 - \frac{51,3}{l} \cdot \frac{0,142}{l} \cdot \frac{l^2}{12} \bigg) = -0,00095m. \\ \end{aligned}$$
 Результаты близки к нулю.
Лекция 5

Лекция 5 2.2. Уравнения Лагранжа

Частотное уравнение можно построить с помощью уравнений Лагранжа второго рода для механической системы

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \mathbf{k}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i^*.$$
(2.16)

Здесь q_i - обобщенная координата, Q_i^* - обобщенная сила, соответствующая обобщенной координате *q*_i

Если силы, приложенные к механической системе, являются потенциальными, то уравнение (3.1) можно записать в виде

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \mathbf{q}_{i}}\right) - \frac{\partial T}{\partial q_{i}} + \frac{\partial \Pi}{\partial q_{i}} = 0, \qquad (2.17)$$

где П - потенциальная энергия упругой деформации системы в текущий момент времени t.

Заметим, что обобщенная сила Q_i^* уравнения (2.16) – это сила, приложенная к колеблющейся массе со стороны безмассового упругого скелета системы, то есть, в случае предыдущей задачи, это сила, с которой безмассовая рама действует на инертный брус CD. При решении задачи удобнее оперировать силами, приложенными к упругой раме, которые равны силам Q_i^* , но противоположны им по направлению. В этом случае уравнения (2.16) запишутся в виде

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \mathbf{q}_{i}}\right) - \frac{\partial T}{\partial q_{i}} + Q_{i} = 0.$$
(2.18)

Рассмотрим построение частотного уравнения на примере предыдущей задачи.

Положение инертного бруса CD определено обобщенными координатами u_i . Кинетическая энергия системы – это кинетическая энергия бруса CD, которая по теореме Кенига слагается из кинетической энергии поступательного движения его со скоростью центра масс и кинетической энергии вращательного движения его вокруг центральной оси.

$$T = T_{nc} + T_{ep} = \frac{1}{2}m\left(m_1^2 + m_2^2\right) + \frac{1}{2}\frac{ml^2}{12}m_3^2.$$
 (2.19)

Потенциальная энергия упругой деформации системы представляется суммой потенциальных энергий деформации трех стержней – AB, BC и DE. Пренебрегая деформацией растяжения – сжатия при определении потенциальной энергии деформации гибких стержней, ограничимся лишь деформацией изгиба. Тогда

$$\Pi = \frac{EI}{2} \int_{l} \left[\frac{d^2 u(z)}{dz^2} \right]^2 dz.$$
(2.20)

В формуле (2.20) u(z) - перемещение сечения с продольной координатой z. Определение этого перемещения основывается на интуитивном представлении формы упругой линии изогнутого стержня. Форма упругой линии определяется функцией, удовлетворяющей граничные условия, которые зависят от способа закрепления гибкого стержня и перемещения граничных сечений. Эти перемещения выражаются через введенные обобщенные координаты. Таким образом, потенциальная энергия деформации каждого стержня выражается через обобщенные координаты.

Рассмотрим деформацию каждого стержня в отдельности и построим уравнения упругой линии

а) Стержень АВ (рисунок 2.8).

Рис. 2.8

Сечение А закреплено шарнирно-неподвижной опорой, которая допускает его поворот. Угол поворота q_A неизвестен. Сечение В получило горизонтальное перемещение u_B , которое выражается через обобщенные координаты u_1 и u_3 (рисунок 2.2)

$$u_B = u_1 - u_3 \cdot \frac{l}{2}.$$
 (2.21)

Угол поворота сечения В q_B неизвестен, но известно, что он такой же, как и угол поворота сечения В стержня ВС. Как следует нагрузить стержень АВ, чтобы получить такие перемещения?

Для поворота сечения В на угол q_B и горизонтального смещения его u_B к сечению В следует приложить пару сил с моментом M_B . Пара сил должна быть уравновешена другой парой. Таковой будет пара, образованная силами X_A и X_B . Эти нагрузки видны на рисунке 2.8.

При построении уравнения упругой линии продольную координату *Z* можно отсчитывать от сечения A, а можно и от сечения B. Если за начальное сечение принять сечение A, то неизвестными начальными параметрами будут

 X_A и q_A . Начальные параметры u_A и M_A известны. Они равны нулю. Если в качестве начального сечения взять сечение В, то известным будет лишь перемещение u_B . Остальные начальные параметры (q_B , X_B и M_B) – неизвестны.

Остановимся на первом варианте.

$$EIu = -EIq_{A^{Z}} + \frac{1}{6}X_{A}z^{3}.$$
 (2.22)

По краевым условиям $u(l) = -u_B$, $u'(l) = q_B$ получим два уравнения

$$-EIq_{A}l + \frac{X_{A}}{6}l^{3} = -EIu_{B};$$

$$-EIq_{A} + \frac{X_{A}l^{2}}{2} = EIq_{B}.$$
 (2.23)

Уравнения (2.23) содержат три неизвестных. Найти их можно лишь при исследовании перемещений стержня ВС.

б) Стержень ВС (рисунок 2.9).

Поскольку продольные деформации стержней вызывают незначительные перемещения, положим, что горизонтальные перемещения всех сечений стержня ВС одинаковы. На рисунке 2.9 указаны лишь вертикальные перемещения сечений. Сечение В повернуто на угол q_B , который, как отмечалось, равен углу поворота сечения В стержня АВ. Сечение С получило вертикальное перемещение $u_C = u_2$ и угловое $q_C = u_3$.

Выберем в качестве начального сечение В. К нему приложены сила У_В и пара сил, момент которой M_B . Здесь следует учесть, что момент M_B на рисунке (2.8) выражает действие стержня BC на стержень AB, а момент M_B на рисунке (2.9) выражает действие стержня АВ на стержень ВС. Поэтому на рисунках (2.8) и (2.9) эти моменты при равных алгебраических значениях имеют противоположные направления.

Уравнение упругой линии

$$EIu = EIq_B z + \frac{1}{2}M_B z^2 + \frac{1}{6}Y_B z^3.$$
(2.24)
овиям
 $u(l) = u_2, \quad u'(l) = u_3$

По краевым условиям

$$u(l) = u_2, \qquad u'(l) = u_3$$

получим уравнения

$$EIu_{2} = EIq_{B}l + \frac{1}{2}M_{B}l^{2} + \frac{1}{6}Y_{B}l^{3};$$

$$EIu_{3} = EIq_{B} + M_{B}l + \frac{1}{2}Y_{B}l^{2}.$$
(2.25)

Уравнения (2.25) кроме неизвестного угла q_B содержат неизвестные момент $M_{B \text{ и силу}} Y_{B}$.

Дополним систему уравнений (2.23) и (2.25) уравнением статики $lX_A - M_B = 0$

и равенством (2.21) и получим следующее решение:

$$q_{A} = \frac{1}{7l} (9u_{1} + 3u_{2} - 5,5u_{3}l);$$

$$q_{B} = \frac{1}{7l} (-3u_{1} + 6u_{2} - 0,5u_{3}l);$$

$$X_{A} = \frac{6EI}{7l^{3}} (2u_{1} + 3u_{2} - 2u_{3}l);$$

$$Y_{B} = \frac{6EI}{7l^{3}} (-3u_{1} - 8u_{2} + 6,5u_{3}l);$$

$$M_{B} = \frac{6EI}{7l^{2}} (2u_{1} + 3u_{2} - 2u_{3}l).$$
(2.26)
Перейдем к определению потенциальной энергии.

Перейдем к определению потенциальной энергии. 0.

$$\Pi = \frac{EI}{2} \int_{l} (u'')^{2} dz .$$

Стержень АВ.

$$u'' = \frac{1}{EI} X_{A} z.$$

$$\Pi_{AB} = \frac{EI}{2} \int_{0}^{l} \frac{1}{(EI)^{2}} X_{A}^{2} z^{2} dz = \frac{X_{A}^{2}}{EI} \frac{l^{3}}{6} = \frac{6EI}{49l^{3}} (2u_{1} + 3u_{2} - 2u_{3}l)^{2}.$$
(2.27)
Стержень ВС.

$$u'' = \frac{1}{EI} (M_{B} + Y_{B}z).$$

$$\Pi_{BC} = \frac{EI}{2} \int_{l} \frac{1}{(EI)^{2}} (M_{B} + Y_{B}z)^{2} dz = \frac{1}{2EI} \left(M_{B}^{2} l + M_{B} Y_{B} l^{2} + \frac{1}{3} Y_{B}^{2} l^{3} \right) =$$

$$= \frac{6EI}{49l^{3}} (3u_{1}^{2} + 19u_{2}^{2} + 15,25u_{3}^{2}l^{2} + 9u_{1}u_{2} - 6u_{1}u_{3}l - 33,5u_{2}u_{3}l).$$
(2.28)

Перейдем к стержню DE (рисунок 2.10).

Если какой либо стержень системы закреплен так, что одно из крайних сечений его имеет возможность свободно поворачиваться, то его перемещение можно сопоставить с перемещениями консоли, нагруженной на конце сосредоточенной силой (рисунок 2.11).

На рисунке 2.12 показано положение стержня DE в состоянии равновесия системы и в деформированном состоянии (D₁E₁).

Это перемещение можно осуществить в два этапа. Сначала переместить стержень как абсолютно жесткий в положение D_1E^1 . Затем, зафиксировав сечение D, действием на сечение E сосредоточенной силой (равной реакции опоры E) переместить его в положение E_1 . При этом перемещении его деформации аналогичны деформациям консоли, изображенной на рисунке 2.11. Прогиб *u*

формулы (2.32) равен $u_2 + lu_3$ и потенциальная энергия деформации стержня DE

$$\Pi_{DE} = \frac{3EI}{2l^3} (u_2 + lu_3)^2.$$

Эта закономерность может использоваться в целях проверки определения потенциальной энергии деформации стержня, один конец которого закреплен с помощью шарнира. На рисунке 2.13 изображена деформация стержня AB.

По найденному значению угла *q*_{*B*} определим параметр *и* формулы (2.32)

$$u = u_B + lq_B = u_1 - \frac{1}{2}lu_3 + \frac{1}{7}(-3u_1 + 6u_2 - 0.5lu_3) = \frac{2}{7}(2u_1 + 3u_2 - 2u_3l).$$
ая энергия

Потенциальная энергия

$$\Pi_{AB} = \frac{3EI}{2l^3}u^2 = \frac{3EI}{2l^3} \cdot \frac{4}{49} (2u_1 + 3u_2 - 2u_3 l)^2 = \frac{6EI}{49l^3} (2u_1 + 3u_2 - 2u_3 l)^2.$$

Этот результат совпадает с выражением (2.27).

Теперь потенциальная энергия упругой деформации всей рамы с учетом выражений (2.27), (2.28), (2.31)

$$\Pi = \Pi_{AB} + \Pi_{BC} + \Pi_{DE} =$$

$$= \frac{3EI}{7l^3} \Big[2u_1^2 + 11,5u_2^2 + 9u_3^2 l^2 + 6u_1 u_2 - 4lu_1 u_3 - 6lu_2 u_3 \Big]$$
(2.33)

Перейдем к построению уравнений Лагранжа. По выражению (2.19)

$$\frac{d}{dt} \left(\frac{\partial T}{\partial u_1} \right) = m \mathcal{R}_{f};$$
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \mathcal{R}_{2}} \right) = m \mathcal{R}_{2};$$
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \mathcal{R}_{3}} \right) = \frac{m l^2}{12} \mathcal{R}_{3}.$$

$$\overline{dt}\left(\overline{\partial \mathbf{k}_{2}}\right)^{-m\mathbf{k}_{2}},$$

$$\frac{d}{dt}\left(\overline{\partial \mathbf{k}_{2}}\right)^{-m\mathbf{k}_{2}},$$

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \mathbf{k}_{3}}\right) = \frac{ml^{2}}{12}\mathbf{k}_{3}.$$
По выражению (2.33)
$$\frac{\partial \Pi}{\partial u_{1}} = \frac{6EI}{7l^{3}}(2u_{1} + 3u_{2} - 2u_{3}l);$$

$$\frac{\partial \Pi}{\partial u_{2}} = \frac{6EI}{7l^{3}}(3u_{1} + 11,5u_{2} - 3u_{3}l);$$

$$\frac{\partial \Pi}{\partial u_{3}} = \frac{6EI}{7l^{2}}(-2u_{1} - 3u_{2} + 9u_{3}l).$$
(2.34)

Подстановкой выражений (2.34) в формулу (2.17) получим три дифференциальных уравнения:

$$m \mathscr{H}_{I} + \frac{6 EI}{7l^{3}} (2u_{1} + 3u_{2} - 2u_{3}l) = 0;$$

$$m \mathscr{H}_{2} + \frac{6 EI}{7l^{3}} (3u_{1} + 11, 5u_{2} - 3u_{3}l) = 0;$$

$$\frac{ml^{2}}{12} \mathscr{H}_{3} + \frac{6 EI}{7l^{3}} (-2u_{1} - 3u_{2} + 9u_{3}l) = 0.$$
(2.35)

(2.36)

Представим решение уравнений (2.35)в виде

$$u_i = A_i \sin kt$$
.

и после введения обозначения (2.13) получим алгебраическую систему

$$(84z-2)A_1 - 3A_2 + 2A_3l = 0;-3A_1 + (84z-11,5)A_2 + 3A_3l = 0;2A_1 + 3A_2 + (7z-9)A_3l = 0.$$

Приравняв нулю определитель однородной системы (2.36)

$$\begin{vmatrix} 84z-2 & -3 & 2\\ -3 & 84z-11,5 & 3\\ 2 & 3 & 7z-9 \end{vmatrix} = 0,$$

получим частотное уравнение

$$49392z^3 - 71442z^2 + 9212z - 98 = 0,$$

или после сокращения

$$504z^3 - 729z^2 + 94z - 1 = 0,$$

что совпадает с выражением (2.15).

Теперь обратимся к формуле (2.18) и построим уравнения Лагранжа с помощью обобщенных сил Q_i .

Вернемся к рисунку 2.4 и вместо сил f_1, f_2 и f_3 приложим обобщенные силы Q_1, Q_2 и Q_3 , соответствующие обобщенным координатам u_1, u_2, u_3 (рисунок 2.14). Совместное действие этих сил вызывает перемещения u_1, u_2, u_3

Рис. 2.14

Найдем эти силы как корни системы уравнений "метода сил"

$$\sum_{i=1}^{n} d_{ij} Q_j = u_i; \qquad i = 1, 2, 3.$$

По найденным ранее коэффициентам d_{ij} строим систему

$$\frac{9l^{3}}{8EI}Q_{1} - \frac{l^{3}}{4EI}Q_{2} + \frac{l^{2}}{6EI}Q_{3} = u_{1};$$

$$-\frac{l^{3}}{4EI}Q_{1} + \frac{l^{3}}{6EI}Q_{2} + 0 = u_{2};$$

$$\frac{l^{2}}{6EI}Q_{1} + 0 + \frac{l}{6EI}Q_{3} = u_{3};$$
(2.37)

Решение системы (2.37)

$$(2.37)$$

$$Q_{1} = \frac{6EI}{7l^{3}} (2u_{1} + 3u_{2} - 2lu_{3});$$

$$Q_{2} = \frac{6EI}{7l^{3}} (3u_{1} + 11.5u_{2} - 3lu_{3});$$

$$Q_{3} = \frac{6EI}{7l^{3}} (-2u_{1} - 3u_{2} - 9lu_{3}).$$
(2.38)

Как видим, значения обобщенных сил, полученные с помощью канонических уравнений "метода сил", полностью совпадают с выражениями (2.34).

Лекция 6 2.3. Учет массы гибких элементов стержневой системы

Перейдем к более точному решению задачи при определении кинетической энергии системы с учетом инертности гибких стержней.

TROCKI Кинетическая энергия гибкого стержня определяется по формуле

$$T = \frac{m}{2l} \int_{l} u^2 dz \tag{2.39}$$

Здесь И - скорость центра тяжести поперечного сечения, положение которого определяется продольной координатой z.

При отсутствии продольных перемещений сечений

$$\boldsymbol{u}=\frac{d}{dt}\boldsymbol{u}_{j}(\boldsymbol{z},t),$$

где и - поперечное перемещение сечения, зависящее от времени и формы стоячей волны. Интуитивное представление формы изогнутого стержня уже использовалось при определении потенциальной энергии упругой деформации стержней АВ, ВС, DE. Она назначалась для каждого стержня исходя из граничных условий. То есть определялась нагрузка, с помощью которой конечные сечения стержня получают заданные перемещения. Затем строилось уравнение упругой линии деформированного стержня, которое мы будем принимать за уравнение стоячей волны.

Поскольку эти уравнения представляются линейными функциями обощенных координат, то и поперечные скорости сечений предстваляются такими же линейными функциями обощенных скоростей.

По уравнению (2.22) упругой линии стержня АВ

$$\mathbf{k} = -\mathbf{q}_{A}^{\mathbf{k}} z - \frac{1}{6EI} \mathbf{k}_{A} z^{3}.$$
(2.40)

Подстановкой выражения (2.40) в формулу (2.39) получим

$$T_{AB} = \frac{m_{AB}}{2} \left(\frac{1}{3} q_A^2 l^2 - \frac{1}{15EI} q_A^2 \lambda_A^2 l^4 + \frac{1}{252(EI)^2} \lambda_A^2 l^6 \right)$$
(2.41)

Сечения стержня ВС кроме поперечного смещения получают продольные перемещения со скоростью $l_{q}^{k} - \frac{1}{2} l_{s}^{k}$. Кинетическая энергия стержня BC

$$T_{BC} = \frac{1}{2} m_{BC} \left(i \mathbf{k}_{T} - \frac{1}{2} l i \mathbf{k}_{S} \right)^{2} + \frac{m_{BC}}{2l} \int_{l} i \mathbf{k}^{2} dz.$$
(2.42)

В формуле (2.42) и - перемещение, определяемое формулой (2.24). С учетом выражения (2.24) интеграл формулы (2.42) принимает вид

$$\int_{0}^{l} \mathbf{R}^{2} dz = \frac{l^{3}}{3} \mathbf{q}_{3}^{\mathbf{R}} + \frac{l^{5}}{20(EI)^{2}} \mathbf{M}_{B}^{\mathbf{R}}^{2} + \frac{l^{7}}{252(EI)^{2}} \mathbf{y}_{B}^{\mathbf{R}}^{2} + \frac{l^{4}}{4EI} \mathbf{q}_{B}^{\mathbf{R}} \mathbf{M}_{B}^{\mathbf{R}} + \frac{l^{5}}{15EI} \mathbf{q}_{B}^{\mathbf{R}} \mathbf{y}_{B}^{\mathbf{R}} + \frac{l^{6}}{36(EI)^{2}} \mathbf{M}_{B}^{\mathbf{R}} \mathbf{y}_{B}^{\mathbf{R}}.$$
(2.43)

Формулы (2.41) и (2.43) содержат производные по времени. Они выражаются через обобщенные скорости в соответствии с формулами (2.26)

После подстановки выражений (2.44) в формулы (2.41) и (2.43) будем иметь:

$$T_{AB} = \frac{m_{AB}}{98} \left(20,37 \, i \aleph_1^2 + 0,6857 \, i \aleph_2^2 + 6,255 \, l^2 \, i \aleph_3^2 + 6,514 \, i \aleph_1 \, i \aleph_2 - 22,54 \, l i \aleph_1 \, i \aleph_3 - 3,714 \, l i \aleph_2 \, i \aleph_3 \right);$$

$$(2.45)$$

0

$$T_{BC} = \frac{m_{BC}}{2} \left(i k_{I} - \frac{1}{2} i k_{3} \right)^{2} + \frac{m_{BC}}{98} \left(0.08571 i k_{I}^{2} + 21.14 u_{2}^{2} + 0.5190 l^{2} i k_{3}^{2} - 1.643 i k_{I} i k_{2} + 0.3286 l i k_{I} i k_{3} - 6.007 l i k_{2} i k_{3} \right).$$

$$(2.46)$$

Сечения стержня DE получают продольные перемещения со скоростью $l_{2} + \frac{1}{2} l_{3} l_{3}$ и поперечные перемещения, определяемые формулой (2.29). Кине-POCHTOT тическая энергия стержня DE

$$T_{DE} = \frac{1}{2} m_{DE} \left(i k_2 + \frac{1}{2} l i k_3 \right)^2 + \frac{m_{DE}}{2} \int_l i k_2^2 dz$$

С учетом выражений (2.30) получим

$$T_{DE} = \frac{m_{DE}}{2} \left(i \vartheta_2 + \frac{1}{2} l i \vartheta_3 \right)^2 + \frac{m_{DE}}{98} \left(0.4857 i \vartheta_2^2 + 0.714 l i \vartheta_2 i \vartheta_3 + 0.01905 l^2 i \vartheta_3^2 \right).$$
(2.47)

Кинетическая энергия жесткого стержня CD представлена формулой (2.19).

Положим для примера

$$m_{CD} = m_1, \quad m_{AB} = 0.25m,$$

 $m_{BC} = 0.2m_{\rm H} \quad m_{DE} = 0.1m.$ (2.48)

После подстановки значений (2.48) в формулы (2.45), (2.46) и (2.47) получим выражение кинетической энергии всей системы.

$$T = T_{AB} + T_{BC} + T_{CD} + T_{DE} =$$

$$= \frac{m}{2} \left(1,454 i \aleph_1^2 + 1,163 i \aleph_2^2 + 0,2077 l^2 u_3^2 + 0,02653 i \aleph_1 i \aleph_2 - 0,1637 l \aleph_1 i \aleph_3 - 0,01776 l i \aleph_2 i \aleph_3 \right).$$

Уравнения Лагранжа с учетом формул (2.33) принимают следующий вид:

$$m(1,454 \aleph_{1} + 0,01326 \aleph_{2} - 0,008485l \aleph_{3}) + \frac{6EI}{7l^{3}} (2u_{1} + 3u_{2} - 2lu_{3}) = 0;$$

$$m(0,01326 \aleph_{1} + 1,136 \aleph_{2} - 0,00888l \aleph_{3}) + \frac{6EI}{7l^{3}} (3u_{1} + 11,5u_{2}3lu_{3}) = 0;$$

$$m(0,08485\mathbf{R}_{1}+0,00888\mathbf{R}_{2}-0,2077l\mathbf{R}_{3})+\frac{6EI}{zl^{3}}(2u_{1}+3u_{2}-9lu_{3})=0.$$
(2.49)

Представив решение уравнений (2.49) в виде

$$u_i = A_i sinkt$$

с помощью подстановки

$$\frac{ml^3}{72EI}k^2 = z\,,$$

получим алгебраическую систему

$$u_{i} = A_{i} \sin kt$$

одстановки

$$\frac{ml^{3}}{72EI}k^{2} = z,$$

браическую систему
 $(122,2z-2)A_{1} + (1,114_{z}-3)A_{2} - (6,874z-2)lA_{3} = 0;$
 $(1,114z-3)A_{1} + (97,67z-11,5)A_{2} - (0,7466z-3)lA_{3} = 0;$
 $-(6,874z-2)A_{1} - (0,7466z-3)A_{2} + (17,45z-9)lA_{3} = 0.$ (2.50)

Приравняв нулю определитель системы (2.50), получим частотное уравнеур. (2.51) ние

$$2077z^3 - 1342z^2 + 131,8z - 1 = 0.$$

Решение частотного уравнения (2.51):

 $z_1 = 0,008275; \quad z_2 = 0,1103; \quad z_3 = 0,5275.$

Этим значениям параметра *z* соответствуют циклические частоты:

$$k_1 = 0.772 \sqrt{\frac{EI}{ml^3}}; \quad k_2 = 2.82 \sqrt{\frac{EI}{ml^3}}; \quad k = 6.16 \sqrt{\frac{EI}{ml^3}}.$$

Еще раз заметим, что как и в задаче, рассмотренной в разделе 1.4, повышение инертности системы приводит к снижению частоты свободных колебаний.

Лекция 7 3. ПРИМЕР РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ 3.1 Задание

Для изображенной на рисунке 3.1 системы построить упрощенную модель, определить число степеней свободы, резонансные частоты и построить главные формы колебаний.

Исходные данные:

$$l_1 = 0,4M; \quad l_2 = 0,35M; \quad l_3 = 0,3M$$

Сечение стержней АВ и CD (рисунок 3.2).

Сечение стержня ВС (рисунок 3.3).

Заданная трехстержневая система имеет бесконечно большое число степеней свободы.

Придав стержням простые деформированные формы, получим упрощенную расчетную модель, положение которой определяется линейными и угловыми перемещениями граничных сечений стержней.

Такая деформированная система изображена на рисунке 3.4.

Рис. 3.4

Здесь учтены лишь изгибные деформации. То есть полагается, что вертикальное перемещение сечения С равно вертикальному перемещению сечения В. Так же равны горизонтальные перемещения сечений С и D. Дальнейшее упрощение системы и построение расчетной схемы возможно лишь при анализе инерционных характеристик заданной конструкции и характеристик жесткости ее элементов.

Решение задачи состоит из следующих этапов:

1. Определение геометрических характеристик сечений стержней системы.

- 2. Определение инерционных характеристик элементов системы.
- 3. Построение упрощенной модели и введение обобщенных координат.
- 4. Построение уравнений упругой линии гибких элементов системы.
- 5. Определение потенциальной энергии упругой деформации.
- 6. Определение кинетической энергии системы.
- 7. Построение уравнений Лагранжа второго рода.
- 8. Построение и решение частотного уравнения.
- 9. Определение и построение главных форм колебаний.

3.2. Геометрические характеристики сечений

Сечение стержней АВ и CD.

Вводим вспомогательную систему координат ХОУ (рисунок 3.5)

Представим сечение совокупностью двух прямоугольников. Их площади JHMB CHICH

$$A_{l} = 6 \cdot 0,5 = 3cM^{2};$$
$$A_{2} = l \cdot l = lcM^{2}.$$

Площадь составной фигуры $A = 3 + 1 = 4cM^2$. Ордината центра тяжести составной фигуры (точки С).

$$y_c = \frac{A_1 y_1 + A_2 y_2}{A} = \frac{3 \cdot 0.25 + 1(-0.5)}{4} = 0.0625 cm.$$

Момент инерции фигуры относительно оси X_c

$$I_{xc} = \frac{6 \cdot 0.5^3}{12} + 3 \cdot (0.25 - 0.0625)^2 + \frac{1 \cdot 1^3}{12} + 1 \cdot (0.0625 + 0.5)^2 = 0.5677 cm^4$$
(3.1)

Сечение стержня ВС (рисунок 3.6).

Вспомогательная ось Х проходит через центр окружности.

Сечение представляется совокупностью прямоугольника с положительной площадью и полукруга и двух треугольников с отрицательной площадью.

$$A_{1} = 6, 0 \cdot 3, 5 = 21 cm^{2},$$

$$A_{2} = -\frac{p \cdot 5^{2}}{8} = -3,125 pcm^{2} = 9,817 cm^{2},$$

$$A_{3} = A_{4} = -\frac{1}{2}1, 5 \cdot 1, 5 = -1,125 cm^{2}.$$

Площадь сечения $A = 21 - 3,125p - 2 \cdot 1,125 = 8,939 cm^2$. Центр тяжести по-оуга удален от оси X на расстояние $y_2 = \frac{2}{3} \frac{d}{2} \cdot \frac{\sin \frac{p}{2}}{\frac{p}{2}} = \frac{10}{3p} cm.$ Ордината центра тяжести составной фигуры $y_c = \frac{A_1 y_1 + A_2 y_2 + 2A_3 y_3}{A} =$ лукруга удален от оси Х на расстояние

$$y_{2} = \frac{2}{3} \frac{d}{2} \cdot \frac{\sin \frac{p}{2}}{\frac{p}{2}} = \frac{10}{3p} c_{M}$$

$$y_{c} = \frac{A_{I}y_{I} + A_{2}y_{2} + 2A_{3}y_{3}}{A} =$$
$$= \frac{1}{8,933} \left(21 \cdot \frac{3,5}{2} - 3,125p \cdot \frac{10}{3p} - 2 \cdot 1,125 \cdot 3 \right) = 2,192cm.$$

Момент инерции составной фигуры относительно центральной оси

$$I_{xc} = \left[\frac{6 \cdot 3.5^{3}}{12} + 21 \cdot (1.75 - 2.192)^{2}\right] - \left[\frac{p \cdot 5^{4}}{128} - \frac{p \cdot 5^{2}}{8} \cdot \left(\frac{10}{3p}\right)^{2} + \frac{p \cdot 5^{2}}{8} \cdot \left(\frac{10}{3p} - 2.192\right)^{2}\right] - \left[1.5 \cdot \frac{1.5^{3}}{36} + 1.125 \cdot (3 - 2.192)^{2}\right] = 6.946 \text{ cm}^{4}.$$

$$(3.2)$$

3.3. Характеристики инертности стержней

BUT COC

Приняв плотность стали $g = 7.8 e/cm^3$, получим массу стержней

$$m_{AB} = 7,8 \cdot 4 \cdot 40 = 1248\epsilon = 1,24\kappa\epsilon,$$

$$m_{BC} = 7,8 \cdot 8,933 \cdot 35 = 2439\epsilon = 2,439\kappa\epsilon,$$

$$m_{CD} = 7,8 \cdot 4 \cdot 30 = 936\epsilon = 0,936\kappa\epsilon.$$
(3.3)

3.4. Построение упрощенной модели

Момент инерции площади сечения стержня ВС в 12,2 раза больше момента инерции сечения стержней АВ и CD. При этом масса стержня ВС почти в 2 раза больше массы стержня АВ и в 2,5 раза больше массы стержня CD.

Пренебрегая деформацией стержня ВС, получим упрощенную модель системы, состоящей из абсолютно жесткого стержня ВС и безмассовых стержней АВ и CD.Такая система изображена на рисунке 3.7.

Рис. 3.7

Положение системы определим двумя координатами: вертикальным смещением узла $B - u_1$ и углом поворота стержня $BC - u_2$.

Поскольку стержень ВС участвует в плоско-параллельном движении, следует определить момент инерции его массы относительно центральной оси. Момент инерции массы стержня относительно поперечной оси Х

$$I_x^m = \int \left(z^2 + y^2\right) dm \, .$$

3десь элемент массы
$$dm = gdV = gdzdA$$
.
 $I_x^m = g \int_V (z^2 + y^2) dz dA = gA \int_l z^2 dz + gl \int_A y^2 dA.$ (3.4)

Первое слагаемое суммы (3.4) представляет собой момент инерции массы бесконечно тонкого стержня относительно оси Х. Масса его

$$m = \mathbf{g} \cdot V = \mathbf{g}Al$$

Если ось Х принадлежит конечному сечению стержня, то

$$gA\int_{l} z^2 dl = \frac{ml^2}{3}$$

Если ось Х проходит через центр массы стержня, то

$$gA\int_{l} z^2 dl = \frac{ml^2}{12}.$$

Второе слагаемое суммы (3.4) есть момент инерции массы *m*, распределенной по бесконечно тонкой пластине, имеющей форму поперечного сечения стержня.

$$gl\int_{A} y^2 dA = \frac{gV}{A}I_x = \frac{m}{A}I_x.$$

Для стержня ВС

ВС

$$I_{BC}^{m} = \frac{m_{BC}l^{2}}{12} + \frac{m_{BC}}{A}I_{xc} = \frac{2,439}{12}35^{2} + \frac{2,439}{8,933} \cdot 6,946 =$$

 $= 250,9\kappa ccM^{2} = 0,2509 \cdot 10^{-1}\kappa cM^{2}.$
(3.5)
ния упругой линии стержней АВ и CD

3.5. Уравнения упругой линии стержней АВ и СD

Деформация стержня АВ вызывается действием на него инертного стержня ВС.

Положим, что в процессе колебательного движения системы стержень АВ принимает форму, совпадающую с формой стержня под статической нагрузкой, вызвавшей вертикальное перемещение сечения $B - u_1$ и поворот его на угол

 u_2 . Такая деформация показана на рисунке 3.8.

Здесь же показана реакция опоры А. Воспользуемся методом начальных параметров, выбрав в качестве начального сечение А. Тогда $u_0 = 0$, $q_0 = 0$. Уравнение упругой линии запишется в виде

 $u(l_1) = u_1, \quad q(l_1) = u'(l_1) = u_2$

$$EIu = \frac{1}{2}Mz^2 + \frac{1}{6}Rz^3.$$
 (3.6)

По условию

составим уравнения

$$\frac{1}{2}Ml_1^2 + \frac{1}{6}Rl_1^3 = EIu_1;$$

$$Ml_1 + \frac{1}{2}Rl_1^2 = EIu_2.$$
(3.7)

(3.8)

Решение системы (3.7):

$$M = \frac{2EI}{l_1^2} (3u_1 - l_1u_2);$$

$$R = \frac{6EI}{l_1^3} (-2u_1 + l_1u_2).$$
(3.8)
жен деформированный стержень CD.

На рисунке 3.9 изображен деформированный стержень CD.

Рис. 3.9

Пренебрегая действием продольных сил положим, что горизонтальные перемещения всех сечений стержня одинаковы и равны $u_2 l_2$. Поскольку эти перемещения не влияют на величину потенциальной энергии упругой деформации стержня CD, учтем лишь вертикальные перемещения сечений. Эти перемещения и статическая нагрузка, вызвавшая их, изображены на рисунке (3.10).

Рис. 3.10

Выбрав в качестве начального сечение D, запишем уравнение упругой линии

$$EIu = EIq_D z - \frac{R}{6} z^3.$$
(3.9)

По условию

Build CERNIN TOCK

$$u(l_3) = u_{1, u'}(l_3) = u_2$$

составим уравнения

$$EIq_{D}l_{3} - \frac{1}{6}Rl_{3}^{3} = EIu_{1;}$$

$$EIq_{D} - \frac{1}{2}Rl_{3}^{2} = EIu_{2.}$$
(3.10)

Решение системы (3.10):

$$q_{D} = \frac{1}{2l_{3}} (3u_{1} - l_{3}u_{2});$$

$$R = \frac{3EI}{l_{3}^{3}} (u_{1} - l_{3}u_{2}).$$
(3.11)

3.6. Потенциальная энергия упругой деформации

Потенциальная энергия изогнутой балки определяется по формуле

$$\Pi = \frac{EI}{2} \int_{l} (u'')^2 dz.$$
(3.12)

Стержень АВ. По уравнению (3.6)

$$u'' = \frac{1}{EI} (M + Rz).$$
(3.13)

Подставив производную (3.13) в формулу (3.12), получим

$$\Pi_{AB} = \frac{1}{2EI} \int_{l} (M + Rz)^2 dz = \frac{1}{2EI} \left(M^2 l_1 + MR l_1^2 + \frac{1}{3} R^2 l_1^2 \right)$$

С учетом найденных по формулам (3.8) значений М и R $- 2EI \left(2^{2} - 2^{2} + 1^{2} + 1^{2} + 1^{2}\right)$

$$\Pi_{AB} = \frac{2EI}{l_1^3} \left(3u_1^2 - 3l_1u_1u_2 + l_1^2u_2^2 \right).$$
(3.14)

Стержень CD.

По уравнению (3.9) $u'' = -\frac{R}{EI}z$. Здесь значение R представлено формулой (3.11).

$$\Pi_{CD} = \frac{1}{2EI} \int_{l_3} R^2 z^2 dz = \frac{R^2 l_3^3}{6EI} = \frac{3EI}{2l_3^3} (u_1 - l_3 u_2)^2.$$
(3.15)

Заметим, что потенциальную энергию деформации стержня CD можно найти, рассматривая его деформацию как деформацию консоли, изогнутой сосредоточенной силой, приложенной к сечению D. По рисунку 3.9 прогиб такой консоли равен

$$f = u_1 - l_3 u_{2.}$$

Потенциальная энергия деформации консоли

$$\Pi = \frac{2EI}{2l_3^3} \cdot f^2 = \frac{3EI}{2l_3^3} (u_1 - l_3 u_2)^2.$$

Найдем потенциальную энергию упругой деформации всей системы. Жесткость сечений стержней АВ и CD

$$EI = 2 \cdot 10^{4} \cdot 0,5677 = 1,135 \cdot 10^{4} \, kHcm^{2} =$$

$$= 1,135 \cdot 10^{4} \cdot 10^{3} \cdot 10^{-4} = 1,135 \cdot 10^{3} \, Hm^{2}.$$

$$\Pi = \Pi_{AB} + \Pi_{CD} = \frac{2EI}{l_{1}^{3}} \left(3u_{1}^{2} - 3l_{1}u_{1}u_{2} + l_{1}^{2}u_{2}^{2} \right) +$$

$$+ \frac{3EI}{2l_{3}^{3}} \left(u_{1} - l_{3}u_{2} \right)^{2} = \frac{2 \cdot 1,135 \cdot 10^{3}}{0,4^{3}} \left(3u_{1}^{2} - 3 \cdot 0,4u_{1}u_{2} + 0,4^{2}u_{2}^{2} \right) +$$

$$+ \frac{3 \cdot 1,135 \cdot 10^{3}}{2 \cdot 0,3^{3}} \left(u_{1}^{2} - 2 \cdot 0,3u_{1}u_{2} + 0,3^{2}u_{2}^{2} \right) =$$

$$= \left(16,95u_{1}^{2} - 8,042u_{1}u_{2} + 1,135u_{2}^{2} \right) \cdot 10^{4}.$$
(3.16)

3.7. Кинетическая энергия системы

Кинетическая энергия системы - это кинетическая энергия жесткого стержня ВС в плоско-параллельном движении.

В соответствии с теоремой Кенига

$$T = T_{BC}^{nocm} + T_{Bc}^{ep} = \frac{1}{2} m_{BC} \left(i \aleph_1^2 + \frac{l_2^2}{4} i \aleph_2^2 \right) + \frac{1}{2} I^m i \aleph_2^2 =$$
$$= \frac{1}{2} m_{BC} i \aleph_1^2 + \frac{1}{2} \left(\frac{m_{BC} l_2^2}{4} + I^m \right) \aleph_2^2.$$
(3.17)

BUT COCK Подстановкой в формулу (3.17) значений (3.3), (3.5) и l_2 получим

$$T = \frac{1}{2} \cdot 2,439 \cdot i \aleph_1^2 + \frac{1}{2} \left(2,439 \cdot 0,35^2 + 0,02509 \right) \aleph_2^2 = \frac{1}{2} \left(2,439 \cdot \aleph_1^2 + 0,09978 \cdot \aleph_2^2 \right).$$
(3.18)

3.8. Уравнения Лагранжа.

По выражению (3.18)

$$\frac{\partial T}{\partial u_1} = 0; \quad \frac{\partial T}{\partial u_2} = 0;$$
$$\frac{d}{dt} \left(\frac{\partial T}{\partial u_1} \right) = 2,439 \, \text{Reg}; \quad \frac{d}{dt} \left(\frac{\partial T}{\partial u_2} \right) = 0,09978 \, \text{Reg}.$$

По выражению (3.16)

$$\frac{\partial \Pi}{\partial u_1} = (33.9u_1 - 8.042u_2) \cdot 10^4;$$

$$\frac{\partial \Pi}{\partial u_2} = (-8.042u_1 + 2.27u_2) \cdot 10^4.$$

$$\frac{\partial \Pi}{\partial u_2} = (-8.042u_1 - 8.042 \cdot 10^4 u_2 = 0;$$

$$8\frac{\partial \Pi}{\partial u_2} = -8.042 \cdot 10^4 u_1 + 2.27 \cdot 10^4 u_2 = 0.$$
 (3.19)

Уравнения Лагранжа:

$$2,439 \mathbf{a}_{1} + 33,9 \cdot 10^{4} u_{1} - 8,042 \cdot 10^{4} u_{2} = 0;$$

$$0,09978 \mathbf{a}_{2} - 8,042 \cdot 10^{4} u_{1} + 2,27 \cdot 10^{4} u_{2} = 0.$$

3.9. Частотное уравнение

Решение уравнений (3.19) разыскивается в виде

$$u_1 = A_1 \sin kt + B_1 \cos kt;$$

$$u_2 = A_2 \sin kt + B_2 \cos kt,$$

где k - циклическая частота свободных колебаний.

Поскольку оба слагаемых в представлении u_1 и u_2 приводят к идентичным алгебраическим уравнениям, можно ограничиться представлением решения уравнений Лагранжа в виде

$$u_1 = A_1 \sin kt, \ u_2 = A_2 \sin kt$$
 (3.20)

Подстановкой выражений (3.20) в уравнения (3.19) получаем алгебраическую систему

$$(2,439k^{2} - 33,9 \cdot 10^{4})A_{1} + 8,042 \cdot 10^{4} A_{2} = 0;$$

$$(3.21)$$

$$8.042 \cdot 10^{4} A_{1} + (0.09978k^{2} - 2.27 \cdot 10^{4})A_{2} = 0$$

Приравняв нулю определитель системы (3.21), получим частотное уравнение

$$0,2434k^4 - 8,919 \cdot 10^4 k^2 + 12,28 \cdot 10^8 = 0.$$
(3.22)

Решение уравнения (3.22):

$$k_1^2 = 1,433 \cdot 10^4$$
, $k_1 = 120c^{-1}$;
 $k_2^2 = 35,21 \cdot 10^4$, $k_2 = 593c^{-2}$. (3.23)

Здесь k_1 - частота основного тона.

По одному из уравнений (3.21), например, по первому, найдем соотношение горизонтального перемещения $u_2 l_2$ и вертикального перемещения u_1 сечения С при каждом значении к. Оно равно

$$\frac{u_2 l_2}{u_1} = \frac{A_2 l_2}{A_1} = \frac{33.9 \cdot 10^4 - 2.439 k^2}{8.042 \cdot 10^4} \cdot 0.35.$$

При $k_{2} = 120c^{-1}$

$$\frac{A_2 l_2}{A_1} = \frac{33.9 \cdot 10^4 - 2.439 \cdot 1.433 \cdot 10^4}{8.042 \cdot 10^4} = 1.32$$

При $k_2 = 593c^{-1}$

$$\frac{A_2 l_2}{A_1} = \frac{33,9 \cdot 10^4 - 2,439 \cdot 1,433 \cdot 10^4}{8,042 \cdot 10^4} = 1,32.$$
$$\frac{u_2 l_2}{u_1} = \frac{A_2 l_2}{A_1} = \frac{33,9 \cdot 10^4 - 2,439 \cdot 35,21 \cdot 10^4}{8,042 \cdot 10^4} = -2,26.$$

Показав на изображенной на рисунке 3.7 деформированной системе координаты u_1 и u_2 , мы тем самым ввели направления отсчета их положительных значений.

При собственной частоте $k_1 = 120c^{-1}$ знаки перемещений u_2l_2 и u_1 совпадают. Эта форма изображена на рисунке 3.11. При частоте $k_2 = 593c^{-1}$ положительной координате u_1 соответствует отрицательное значение u_2 . Значит при смещении сечения С вверх оно получит горизонтальное перемещение влево. Эта форма изображена на рисунке 3.12.

Рис. 3.12

Проверим ортогональность форм, то есть удовлетворение уравнения $m_1 A_{11} A_{21} + m_2 A_{12} A_{22} = 0.$

Здесь $m_1 = 2,439 \kappa r$, $m_2 = 0,09978 \kappa r m^2$,

$$A_{12} = \frac{33.9 \cdot 10^4 - 2.439 \cdot 1.433 \cdot 10^4}{8.042 \cdot 10^4} A_{11} = 3.78 A_{11},$$
$$A_{22} = \frac{33.9 \cdot 10^4 - 2.439 \cdot 35.21 \cdot 10^4}{8.042} \cdot A_{21} = -6.463 A_{21}.$$

Скалярное произведение

 $m_1 A_{11} A_{21} + m_2 A_{12} A_{22} = 2,439 \cdot A_{11} \cdot A_{21} + 0,09978 \cdot 3,78A_{11} (-5,463A_{21}) =$

$$= 2,439A_{11}A_{21} - 2,438A_{11}A_{21} = 0,001A_{11}A_{22}.$$

Лекция 8 3.10. Учет массы гибких стержней АВ и СD.

Пренебрегая массой гибких стержней ради упрощения решения задачи, мы несколько занизили кинетическую энергию системы. В результате полученные расчетные значения собственных частот получились завышенными.

Теперь учтем массы стержней АВ и CD и найдем значения их кинетической энергии.

Стержень АВ.(рисунок 3.8)

По уравнению упругой линии (3.6)

$$u = \frac{1}{6EI} \left(3M_z^2 + R_z^3 \right)$$

Кинетическая энергия

$$T_{AB} = \frac{m_{AB}}{2l_{AB}} \int_{0}^{l_{1}} dz = \frac{m_{AB}}{2 \cdot 36(EI)^{2} l} \int_{0}^{l_{1}} \left(9M^{2} z^{4} + 6MRz^{5} + R^{2} z^{6}\right) =$$

= $\frac{m_{AB}}{72(EI)^{2}} \left[\frac{9}{5}M^{2} l^{4} + MRl^{5} + \frac{1}{7}M^{2} l^{6}\right].$ (3.24)

В соответствии с формулами (3.8) производные М и К выражаются че-⁴⁷ *L*_{HMB} ⁶ (3.25) рез обобщенные скорости и и и

$$M^{\bullet} = \frac{2EI}{l_1^2} (l^{\bullet}_{I_1} - l_1 l^{\bullet}_{I_2});$$
$$M^{\bullet} = \frac{6EI}{l_1^3} (-2l^{\bullet}_{I_1} + l_1 l^{\bullet}_{I_2}).$$

После подстановки выражений (3.25), а также массы m_1 и длины l_1 в формулу (3.24) кинетическая энергия стержня АВ

$$T_{AB} = 0.231 \imath k_1^2 - 0.02615 \imath k_1 \imath k_2 + 0.0009509 \,.$$

Стержень CD.

По уравнению упругой линии (3.9)

$$\mathbf{k} = \frac{1}{6EI} \left(6EI \mathbf{q}_D^{\mathbf{k}} z - \mathbf{k} z^3 \right).$$

Кинетическая энергия

$$T_{CD} = \frac{m_{CD}}{2l_3} \int_0^{l_3} i \mathbf{k}^2 dz =$$

= $\frac{m_{CD}}{2 \cdot 36(EI)^2 l_3} \int_0^{l_3} \left[36(EIq_D^2)^2 z^2 - 12EIq_D^2 \mathbf{k} z^4 + \mathbf{k}^2 z^6 \right] dz.$
С учетом формул (3.11), значения массы m_3 и длины l_3 , кинетическая энергия стержня CD:
 $T_{CD}^{eepm} = 0.2273 i \mathbf{k}_1^2 - 0.02407 i \mathbf{k}_1 i \mathbf{k}_2 + 0.0008023 i \mathbf{k}_2^2;$

$$T_{CD}^{eepm} = 0,2273 \, \mathfrak{k}_{1}^{2} - 0,02407 \, \mathfrak{k}_{1} \, \mathfrak{k}_{2} + 0,0008023 \, \mathfrak{k}_{2}^{2} ;$$

$$T_{CD}^{cop} = \frac{1}{2} m_{CD} l_{2}^{2} \, \mathfrak{k}_{2}^{2} = \frac{1}{2} 0,936 \cdot 0,35^{2} \, \mathfrak{k}_{2}^{2} = 0,05733 \, \mathfrak{k}_{2}^{2} .$$

Теперь кинетическая энергия системы

$$T_{BC} + T_{AB} + T_{CD} = 1,679 \, \mathrm{i} \, \mathrm{k}_1^2 - 0,05022 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2^2 \, \mathrm{i} \, \mathrm{k}_1 \, \mathrm{i} \, \mathrm{k}_2 + 0,1090 \, \mathrm{i} \, \mathrm{k}_2 \, \mathrm{i} \, \mathrm{k}_2 \, \mathrm{i} \, \mathrm{k}_2 \, \mathrm{i} \, \mathrm{i} \, \mathrm{k}_2 \, \mathrm{i} \, \mathrm{i}$$

Уравнения Лагранжа:

$$3,358 \mathbf{a}_{1} - 0,05022 \mathbf{a}_{2} + 33,9 \cdot 10^{4} u_{1} - 8,042 \cdot 10^{4} u_{2} = 0;$$

$$-0,05022 \mathbf{a}_{1} + 0,2179 \mathbf{a}_{2} - 8,042 \cdot 10^{4} u_{1} + 2,27 \cdot 10^{4} u_{2} = 0.$$

Подстановкой в уравнения Лагранжа выражений (3.20) построим алгебраическую систему

$$(3,359k^{2} - 33,9 \cdot 10^{4})A_{1} - (0,05022k^{2} - 8,042 \cdot 10^{4})A_{2} = 0;$$

- $(0,05022k^{2} - 8,042 \cdot 10^{4})A_{1} + (0,2179k^{2} - 2,27 \cdot 10^{4})A_{2} = 0$
авнение

Частотное уравнение

$$\left(3,359k^2\,33,9\cdot10^4\right)\left(0,2179k^2-2,27\cdot10^4\right) - \left(0,05022k^2-8,042\cdot10^4\right)^2 = 0,$$

или

$$0,7294k^4 - 14,204 \cdot 10^4 k^2 + 12,279 \cdot 10^8 = 0.$$
(3.26)
ия (3.26):

Решения уравнения (3.26):

$$k^{2} = \frac{1}{0,7294} \left[7,102 \cdot 10^{4} \pm \sqrt{7,102^{2} \cdot 10^{8} - 0,7294 \cdot 12,279 \cdot 10^{8}} \right].$$

$$k_{1}^{2} = 0,9067 \cdot 10^{4}; \quad k_{1} = 95,2c^{-1}.$$

$$k_{2}^{2} = 18.57 \cdot 10^{4}; \quad k_{2} = 431c^{-1}.$$

$$k_1^2 = 0,9067 \cdot 10^4$$
; $k_1 = 95,2c^{-1}$.
 $k_2^2 = 18,57 \cdot 10^4$; $k_2 = 431c^{-1}$.

Сравним эти значения со значениями собственных частот, полученных без учета масс гибких стержней.

$$(k_1 = 120c^{-1}, k_2 = 593c^{-1}).$$
 Расхождение составляет 26% и 37,5%.

Лекция 9 4. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СТРЕЖНЕВОЙ СИСТЕМЫ

Пусть к сечению В рассмотренной в задании системы приложена вертикальная возмущающая сила, меняющаяся по закону

 $P = P_0 sin Wt$ (рисунок 4.1).

Уравнения Лагранжа принимают вид

$$\frac{d}{dt} \left(\frac{\partial T}{\partial u_1} \right) - \frac{\partial T}{\partial u_1} + \frac{\partial \Pi}{\partial u_1} = P_0 \sin wt;$$
$$\frac{d}{dt} = \left(\frac{\partial T}{\partial u_2} \right) - \frac{\partial T}{\partial u_2} + \frac{\partial \Pi}{\partial u_2} = 0.$$

Пользуясь найденными выражениями (3.16) и (3.18) потенциальной и кинетической энергии, получим следующую систему дифференциальных уравнений:

$$2,439 \mathbf{a}_{1} + 33,9 \cdot 10^{4} u_{1} - 8,042 \cdot 10^{4} u_{2} = P_{0} \sin wt;$$

$$0,09978 \mathbf{a}_{2} - 8,042 \cdot 10^{4} u_{1} + 2,27 \cdot 10^{4} u_{2} = 0.$$
 (4.1)

Установившееся движение описывается частным решением системы

$$u_1 = B_1 \sin wt$$
, $u_2 = B_2 \sin wt$.

Подстановка частного решения (4.2) в дифференциальные уравнения (4.1) приводит к алгебраической системе

$$(2,439w^{2} - 33,9 \cdot 10^{4})B_{1} + 8,042 \cdot 10^{4}B_{2} = -P_{0}; 8,042 \cdot 10^{4}B_{1} + (0,09978w^{2} - 2,27 \cdot 10^{4})B_{2} = 0.$$

$$(4.3)$$

Определитель системы (4.3)

$$D = 0.2434w^4 - 8.919 \cdot 10^4 w^2 + 12.28 \cdot 10^8.$$
(4.4)

Решая систему (4.3) относительно амплитуд вынужденных колебаний B_1 и B_2 , получим:

$$B_{1} = \frac{P_{0}}{D} \left(2,27 \cdot 10^{4} - 0,09978 \cdot w^{2} \right);$$

$$B_{2} = \frac{P_{0}}{D} \cdot 8,042 \cdot 10^{4}.$$
(4.5)

По этим формулам строится частотно- амплитудная диаграмма.

Заметим, что при частоте возмущения W, совпадающей с собственной частотой k_1 или k_2 , определитель (4.4) алгебраической системы (4.3) совпадает с левой частью частотного уравнения (3.22). То есть при $W = k_1$ или $w = k_2$ D=0.

В этом случае амплитуды (4.5) становятся неограниченными, то есть имеет место резонанс.

Поэтому собственные частоты упругой системы называются резонансными.

Амплитуда B_1 при определённом значении частоты возмущения W может оказаться равной нулю, что говорит об отсутствии колебания по координате u_1 .Это явление называется антирезонансом.

Приравняв нулю амплитуду В₁ решения (4.5)

$$2,27 \cdot 10^4 - 0,09978 \mathrm{w}^2 = 0$$

найдем частоту антирезонанса

$$w_0 = \sqrt{\frac{2,27 \cdot 10^4}{0,09978}} = 477c^{-1}.$$

Равенство нулю амплитуды В₁ позволяет рассматривать сечение В как закрепленное шарнирно подвижной опорой. Значит, вынужденные колебания исследуемой рамы при частоте антирезонанса аналогичны свободным колебаниям рамы с одной степенью свободы, изображенной на рисунке 4.2.

440

Рис. 4.2

Подстановкой в формулы (4.5) значения w = 0 получим перемещения u_1 и u_2 при статической нагрузке, равной P_{0}

$$u_{1cm} = \frac{2,27 \cdot 10^4 P_0}{12,28 \cdot 10^8} = 0,1849 \cdot 10^{-4} P_0;$$
$$u_{2cm} = \frac{8,042 \cdot 10^4 P_0}{12,28 \cdot 10^8} = 0,6549 \cdot 10^{-4} P_0.$$

Как и в случае системы с одной степенью свободы найдем динамические коэффициенты:

$$b_{1} = \frac{B_{1}}{u_{1cm}} = \frac{P_{0} \left(2.27 \cdot 10^{4} - 0.09978 w^{2} \right)}{D \cdot 0.1849 \cdot 10^{-4} \cdot P^{0}} = \frac{12.28 \cdot 10^{4} - 0.5396 w^{2}}{D} \cdot 10^{4};$$

$$b_{2} = \frac{B_{2}}{u_{2cm}} = \frac{P_{0} \cdot 8.042 \cdot 10^{4}}{P_{0} \cdot 0.6549 \cdot 10^{-4} D} = \frac{12.28 \cdot 10^{8}}{D}.$$
(4.6)

Формулы (4.6) позволяют построить диаграмму, аналогичную частотноамплитудной. Она изображена на рисунке 4.3.

Рис. 4.3

Покажем форму деформированной системы при различных значениях частоты возмущения. Напомним, что направления отсчета положительных значений координат u_1 и u_2 и возмущающей силы Р при sinwt > 0 показано на рисунках 3.7 и 4.1. Соотношение перемещений u_2l_2 и u_1 найдем по формулам (4.5)

Рис. 4.5

5. ЗАДАНИЕ К РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ

На рисунках 5.1 и 5.2 представлены схемы упругой системы, состоящие из трех стержней. Варианты поперечного сечения стержня, изображенного двойной линией, представлены на рисунках 5.3 и 5.4. Остальные стержни имеют прямоугольное сечение. К сечению D системы, показанной на рисунке 5.2, прикреплена сосредоточенная масса m_0 . Номер схемы, длины стержней, номер составного сечения, размеры a и c сечения и масса m_0 задаются преподавателем. Размер b составного сечения определяется по формулам:

Требуется:

- 1. Найти моменты инерции сечений стержней, относительно их центральных осей.
- 2. Сравнить жесткости сечений стержней и, построив упрощенную модель заданной системы, ввести обобщенные координаты.
- 3. Найти массы и моменты инерции массы стержней, необходимые для определения кинетической энергии системы.
- 4. Принимая во внимание перемещения крайних сечений стержней, их закрепления и взаимодействия с соседними стержнями, построить уравнения их упругих линий.
- 5. Найти потенциальную энергию упругой деформации системы, выразив ее через обобщенные координаты.
- 6. Найти кинетическую энергию системы, выразив ее через обобщенные скорости.
- 7. Построить уравнения Лагранжа второго рода и частотное уравнение.
- 8. Найти резонансные частоты и построить главные формы колебаний.

Рис. 5.1

Рис. 5.4

Рекомендуемая литература:

- 1. Пановко, Я. Г. Основы прикладной теории упругих колебаний /Я. Г. Пановко. – Москва : Машиностроение, 1967. – 316 с.
- 2. Пановко, Я. Г. Введение в теорию механических колебаний : учебное пособие для втузов / Я. Г. Пановко. – Москва : Наука, 1971. – 239 с.
- 3. Феодосьев, В. И. Сопротивление материалов : учебник для втузов / В. И. Феодосьев. - Москва : Наука, 1986. - 512 с. 4. Свободные колебания стержневых систем : методические указания / 4. Свободные колебания стержневых систем : ВТИЛП, 1994. - 22 с.

 - 5. Резонанс колебаний : методические указания / сост. А. А. Калинин, Г. Н. Федосеев. – Витебск : ВГТУ, 1996 – 35 с.
 - 6. Расчетно-проектировочная работа по сопротивлению материалов "Колеoe yca n. mn. - B. Hebornethikhik restronomiescumescumes Kuonomiescumescumes бания корпуса швейного полуавтомата" : методические указания / сост. А. А. Калинин. – Витебск : ВГТУ, 1998 – 15 с.

Учебное издание

Калинин Александр Анатольевич Петухов Виталий Викторович

BUT CCKMM TO КОЛЕБАНИЯ УПРУГОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ

Курс лекций

Редактор Федосеев Г.Н. Технический редактор Германенко Л.Г. Корректор Богачёва Е.М. Компьютерная верстка Германенко Л.Г.

Подписано к печати 30.01.09 . Формат 60х84/1/16. Бумага офсетная №1. Гарнитура "Таймс". Усл. печ. листов <u>4.0</u>. Уч.-изд. листов <u>4,3</u>. Тираж ____ экз. Заказ № _62_.

Учреждение образования "Витебский государственный технологический университет" 210035, г.Витебск, Московский пр., 72.

Отпечатано на ризографе учреждения образования "Витебский государственный технологический университет". Лицензия № 02330/0133005 от 01 апреля 2004г.