Далее проводилась наработка трех опытных рулонов стеклоткани Э1 — 62Пм (107) по 2000 м с увеличением скорости станка L — 5200 до 700 об/мин. При скорости станка 700 об/мин общее количество пороков составляет 1,96, и такой порок как слет утка без петли, имеет максимальное значение 0,8. Поэтому скоростной режим станка 700 об/мин неприемлем для выработки стеклоткани.

Сравнительный анализ пороков по видам и их количеству представлен в таблице.

Таблица - Сравнительный анализ пороков по видам и их количеству

Пороки стеклоткани	Базовая ткань n = 600 об/мин	Опытная ткань n = 600 об/мин	Опытная ткань n = 650 об/мин	Опытная ткань n ≃ 700 об/мин
Общее количество пороков на100 п.м ткани	1,65	1,5	1,47	1,96
Пороки основы	80,0	0,08	0,1	0,18
Пороки утка	1,4	1,22	1,2	1,62
Пороки общего характера	0,17	0,05	0,17	0,16
Слет утка без петли	0,52	0,35	y sasting	8.0

На основе проведенных исследований установили, что наиболее оптимальным вариантом скоростного режима станка L-5200 является скорость станка 650 об/мин. При данном скоростном режиме общее количество пороков на 100 м стеклоткани составило 1.47 и такой порок, как слет утка без петли, полностью отсутствует, что значительно повышает качество вырабатываемой ткани.

Результаты работы внедрены в производство на предприятии ОАО «Полоцк - Стекловолокно».

УДК 677.024.1 (677.017: 677.53)

РАЗРАБОТКА СТРУКТУРЫ И ИССЛЕДОВАНИЕ СВОЙСТВ ТКАНЕЙ ИЗ НИТЕЙ С МЕДНЫМ НАНОПОКРЫТИЕМ

Студ. Спиридонова Е.Л., доц. Бондарева Т.П.

УО «Витебский государственный технологический университет»

Целью нашей работы явилась разработка ассортимента и технологии выработки ткани с антистатическим эффектом с использованием полиамидных мононитей с напылением медных наночастиц.

Кафедра «ПНХВ» УО «ВГТУ» предложила нам три вида полиамидных мононитей с медным нанопокрытием следующих линейных плотностей: 7,5 текс, 20 текс и 29,4 текс. Нанесение медного нанопокрытия осуществлялось в условиях ЧУП «Элком» (г. Витебск) на специальной установке. В таблице 1 приведены физикомеханические показатели полиамидных мононитей.

Таблица 1 – Физико-механические свойства полиамидных мононитей

Наименование показателя		Значение			
Линейная плотность, текс	7,0	20,0	29,4		
Разрывная нагрузка, сН	240	800	1350		
Удлинение при разрыве, %	13,5	29	12,8		
Коэффициент вариации по линейной плотности, %	0,27	0,36	0,02		
Коэффициент вариации по разрывной нагрузке %		21,2	37,0		
Коэффициент вариации по разрывному удлинению, %	55,4	42,6	34,9		

Работа выполнялась в условиях лаборатории кафедры «Ткачество». Наработка опытных образцов тканей осуществлялась на ткацком станке АТ-100-5М переплетением усиленная саржа 2/3. За базу нами была взята хлопчатобумажная ткань, в основе и утке которой использовалась крученая пряжа линейной плотности 25 текс × 2. В таблице 2 приведены физико-механические свойства суровой базовой ткани.

Таблица 2 – Физико-механические свойства суровой базовой ткани

Наименование показателя	3начение
Ширина суровой ткани, см	88,0
Плотность ткани, нит/ 10 см	Control of the last
по основе	209,0
по утку	190,0
Разрывная нагрузка полоски ткани 50×200 мм, Н	The mercury wards
по основе	662
по утку	530
Удлинение при разрыве, %	THE STREET PORTOR
по основе	12
по утку	9,8
Поверхностная плотность, г/м²	209,1
Уработка, %	C/c
по основе	4,2
по утку	3,8
Воздухопроницаемость, дм³/ м² × с	288,0

Полиамидные нити располагались на базовой ткани с чередованиями. 1 × 1 см 2 × 2 см; 3 × 3 см.

Все образцы тканей исследовались в лаборатории ОАО «КИМ» на удельное поверхностное электрическое сопротивление (антистатический эффект). Чтобы антистатические свойства ткани удовлетворяли требованиям ГОСТа, цифровые значения должны быть меньше 10^7 Ом. Анализ протокола испытаний показал, что этим требованиям удовлетворяют все три образца ткани с применением полиамидной нити линейной плотности 7,5 текс и два образца ткани с применением полиамидной нити линейной плотности 20 текс (чередование нитей 1 × 1 см и 2 × 2 см). В таблице 3 приведены физико-механические свойства опытных образцов тканей.

С увеличением расстояния между полиамидными мононитями удельное по верхностное электрическое сопротивление увеличивается, а с увеличением линейной плотности мононитей антистатические свойства тканей ухудшаются. Проведенный нами эксперимент позволил определиться с дальнейшей промышленной проработкой полиамидных мононитей с медным нанонапылением в ткани с антистатическим эффектом.

Таблица 3 – Физико-механические свойства опытных образцов тканей

Наименование показателя	Образец ткани № 1 с Т _{п/вм} = 7,5 текс			Образец ткани № 2 с Т _{п/ам} = 20,0 текс			Образец ткани № 3 с Т _{п/ям} = 29,4 текс		
	Поверхностная плотность суро- вой ткани, г/м²	204,7	207,2	207,9	205,7	207,7	208,3	207,1	208,3
Воздухопрони- цаемость, дм ³ / м ² ×с	290,8	289.5	288,2	290.7	289,3	287,2	288,5	287,8	286,6
Удельное по- верхностное электрическое сопротивление, Ом	3,36×10 ⁴	1,98×10 ⁵	2,57×10 ⁵ V	2,64×10 ⁴	3,36×10	3,95×10 ¹⁰	3,95×10 ⁹	2.9×10 ⁸	5,27×10 ¹¹
ДК 677.024.1 : (6)	77 074	· 687 1)			Yec,	44		

РАЗРАБОТКА СУКОННОЙ ПАЛЬТОВОЙ ТКАНИ С ИСПОЛЬЗОВАНИЕМ ПРЯЖИ ИЗ ХИМИЧЕСКИХ BOAOKOH

Студ. Санкевич Н.Н., доц. Невских В.В.

УО «Витебский государственный технологический университет»

При разработке нового ассортимента пальтовой ткани рекомендовано использовать пряжу со 100 % содержанием химических волокон, в частности нитроновую пряжу линейной плотности 31 текс × 8 для основы и фасонную пряжу петельной плотности 430 СТРУКТУРЫ линейной текс С содержанием полиакрилонитрильного и 15 % полиэфирного волокна для утка. В ткани-аналоге в основе и в утке используется смесовая полушерстяная пряжа с содержанием нитронового и полиамидного волокон.