Таблица 2 – Степень извлечения красителей из остаточной красильной ванны цеопагом

Краситель	Ссорбента,	Сост. красителя,	Ссор.кр.,	Степень	Сорбция,
краситель	г/л	г/л	мг/л	извлечения, %	МГ кр/Г _{сорбента}
Кислотный оранжевый	10	55	145	72,5	14,5
	20	12,2	187,8	98,9	9,39
	30	1,2	198,8	99,4	6,62
	40	0,4	199,6	99,8	4,99
	50	0,1	199,6	99,8	3,99
Кислотный	10	20	80	90	18
кислотный красный	20	4,8	195,2	97,6	9,76
	30	4,8	195,2	97,6	6,5
	40	3,4	196,6	98,3	4,9

Список использованных источников

1. Дубинин М.М. Адсорбция, адсорбенты и адсорбционные процессы в нанопористых материалах./ Граница, 2011. – 496 с.

УДК 697.922.2

ОПТИМИЗАЦИЯ ВОЗДУХОРАСПРЕДЕЛЕНИЯ С ИСПОЛЬЗОВАНИЕМ ТЕКСТИЛЬНЫХ ВОЗДУХОВОДОВ

Королёва Т.И., доц., Ланкович С.В., асс., Пшеничнюк В.А., маг.

Полоцкий государственный университет,

г. Новополоцк, Республика Беларусь

<u>Реферат</u>. В статье представлено исследование с помощью компьютерного моделирования и опытных испытаний способов воздухораспределения в помещениях текстильными воздухораспределителями при различных температурных режимах, позволившего разработать и систематизировать рекомендации по выбору эффективного способа воздухораспределения.

<u>Ключевые слова</u>: текстильные воздуховоды, воздухораспределители, воздушные потоки, микроклимат помещений.

Производительность труда и здоровье работников предприятия, условия нормального функционирования технологического процесса напрямую взаимосвязаны с воздушнотепловым режимом здания, который определяется совокупностью полей следующих параметров: температуры внутреннего воздуха; температуры поверхностей ограждающих конструкций; относительной влажности воздуха; скорости движения воздушного потока; интенсивности теплового облучения; концентрации вредных примесей; ионного состава воздуха [1].

Обеспечение и поддержание необходимых параметров микроклимата помещения в рабочей зоне является сложной задачей. Исследования показывают, что из-за неправильной организации воздухообмена в помещении и, в первую очередь, неправильного выбора и расчета воздухораспределительных устройств, не удается обеспечить в рабочей зоне помещения заданных параметров воздушной среды. Так работа систем в режиме воздушного отопления при плохо организованном выпуске нагретого воздуха характеризуется значительным градиентом температуры по высоте, что приводит к неудовлетворительным условиям в рабочей зоне и перерасходу теплоты на обогрев здания. При работе систем в режиме охлаждения в местах истечения приточных струй могут создаваться повышенные скорости и перепады температур, сопровождающиеся неблагоприятным воздействием на организм человека, а также на технологический процесс. Неправильный выбор воздухораспределителя и места его установки может приводить к образованию застойных зон, в которых происходит отклонение значения температуры от заданного и повышение концентрации вредных веществ [2].

Следовательно, особое внимание при проектирование вентиляционных систем должно уделяться выбору способа раздачи воздуха, конструкции воздухораспределителя, месту его установки. Кроме того, необходимо производить правильный расчет параметров воздуха, подаваемого в помещение с помощью выбранного воздухораспределителя.

На сегодняшний день остается много малоизученных вопросов, связанных с применением современных системах организации микроклимата текстильных воздуховодов и воздухораспределителей. Данный вид элементов систем вентиляции для раздачи воздуха внутри помещения появился относительно недавно, однако имеет широкую область применения: производственные цеха предприятий пищевой промышленности, химической промышленности, текстильной промышленности, логистические низкотемпературные склады, помещения спортивных сооружений (бассейны, спортивные залы, фитнес-центры), офисы, супермаркеты, рестораны, кинотеатры и другое. Различные способы раздачи воздуха текстильными воздухораспределителями позволяют добиваться при эксплуатации систем нормируемых значений скорости и температуры воздушного потока, что является особенно сложной задачей для крупнообъемных помещений. Все эти факторы делают текстильные воздуховоды приоритетными при выборе воздухораздающих устройств, однако недостаток информации накладывает некоторые ограничения при работе с данным видом вентиляционного оборудования. Результаты и рекомендации проводимой работы призваны облегчить процесс проектирования и эксплуатации систем с использованием текстильных воздуховодов и воздухораспределителей.

Текстильные воздуховоды имеют ряд преимуществ перед традиционными системами распределения воздуха, состоящими из стальных воздуховодов и воздухораспределительных устройств:

- позволяют добиться равномерного распределения воздуха с требуемой скоростью;
- снижение нагрузки на несущие конструкции из-за малого веса системы;
- значительное уменьшение сроков и стоимости монтажа систем;
- не требуется дополнительная изоляция воздуховода при кондиционировании воздуха помещения;
 - простота санитарного обслуживания воздуховодов (стирка в стиральной машине);
- специальная обработка материала гарантирует уничтожение бактерий, которые осаждаются на ткани. Этот эффект сохраняется даже после многократных стирок;
- полноценная поставка, нет необходимости в дополнительной комплектации другим оборудованием и монтажными материалами;
 - длительный срок службы воздуховодов (порядка 20 лет);
- общая стоимость текстильных воздуховодов и комплекса работ по их монтажу и обслуживанию на 30-40 % ниже в сравнении с системами из оцинкованных воздуховодов;
- многообразие цветов тканей и форм сечений текстильных воздуховодов позволяют любому помещению соответствовать всем эстетическим и дизайнерским требованиям.

Текстильные воздуховоды могут иметь не только стандартные (круглые и прямоугольные) формы поперечных сечений, но также могут быть полукруглыми, треугольными, либо иметь форму квадранта, сегмента или сектора. Текстильный воздуховод уже с момента производства одновременно является воздухораспределителем.

В системах вентиляции, кондиционирования воздуха и воздушного отопления с применением текстильных воздуховодов может быть один из следующих способов воздухораспределения либо их различные комбинации между собой: воздухопроницаемая ткань, микроперфорация, перфорация, малые сопла, большие сопла [3].

Для моделирования воздушных потоков выбраны пять наиболее распространенных видов воздухораспределения в системах с использованием текстильных воздуховодов.

Для каждого из выбранных способов раздачи воздуха построение диаграммы воздушного потока было проведено для одного из трех температурных режимов:

- 1) $t_n = t_e$ (изотермический процесс) в помещении;
- 2) $t_{\pi} < t_{\rm g}$ (процесс кондиционирования или охлаждения воздуха в помещении);
- 3) $t_n > t_e$ (процесс воздушного отопления помещения);

где t_{π} – температура приточного воздуха, °C, t_{e} – нормируемая температура внутреннего воздуха, °C.

Таким образом, совмещая один из способов воздухораспределения с каждым температурным режимом, получаем 15 различных моделей воздушных потоков.

Расчет текстильных воздухораспределителей, а также моделирование воздушных потоков были произведены с помощью программы PRIHODASW – программного софта

YO «BITY», 2017 **279**

чешской компании-производителя текстильных воздуховодов, предназначенного для проектирования текстильных систем распределения воздуха. Все произведенные в программе расчеты можно выводить в pdf-формате. Кроме того, программа PRIHODASW позволяет производить моделирование воздушных потоков на выходе из текстильных воздуховодов. Для каждой модели воздушного потока составлена компьютерная диаграмма воздушного потока в помещении.

Проверка полученных в ходе компьютерного моделирования результатов была произведена в ходе на базе предприятия Prihodas.r.o.(Чешская Республика) с помощью испытаний в задымляемой экспериментальной камере [4].

По каждому из способов воздухораспределения проанализированы примеры использования текстильных воздухораспределителей в современной мировой практике.

Разработаны, систематизированы и сведены в таблицу рекомендации по выбору способов воздухораспределения с помощью текстильных воздуховодов при различных температурных режимах, позволяющие облегчить выбор не только определённого способа воздухораспределения, но и необходимую конструкцию воздухораспределителя. В таблице 1 приведен пример одного из способов воздухораспределения для трёх температурных режимов, дающий общую характеристику воздухораспределения с указанием в каких помещениях его можно применять и рекомендациями по применению.

Таблица 1 Рекомендации по выбору способов воздухораспределения с помощью

текстильных воздуховодов при различных температурных режимах

Nº п/п	Тип и схема воздухо- распределения	Темпе- ратур- ный режим	Общая характеристика воздухораспре- деления	Помещения (здания)	Рекомендации по применению
1.	Равномерная микроперфорация 0°-360°	$t_n = t_B$	обеспечение нормируемой скорости не более 0,2 м/с на расстоянии 0,5- 1,5 м от рабочей зоны; равномерное распределение потока на выходе из воздухораспре- делителя.	производстве нные цеха, магазины, кафе, спортивные залы, фитнесцентры, офисы	малогабаритные помещения с массовым пребыванием людей и низкими потолками, а также производственные помещения
2.		t _⊓ < t _B		производстве нные цеха, помещения типографии, магазины, кафе, спортивные залы, фитнесцентры, офисы	малогабаритные помещения с большими теплоизбытками, где охлажденный воздух подается в рабочую зону без нарушения технологического процесса и без вреда для здоровья
3.		t _□ > t _B		-	не рекомендуется применять.

Такие рекомендации, составленные для 15 типов и способов воздухораспределения позволят упростить выбор системы воздухораспределения текстильными воздуховодами, обеспечив необходимый микроклимат в помещениях.

Выполненный экономический расчёт использования системы текстильных воздуховодов и воздухораспределителей для вентиляции в действующем гипермаркете «Зодиак» г. Новополоцка при сравнительном анализе с системой из стальных оцинкованных воздуховодов и решёток показал, что экономический эффект от использования текстильных воздуховодов и воздухорапределителей составляет 34,6 %.

Список использованных источников

- 1. СНБ 4.02.01-03. Отопление, вентиляция и кондиционирование воздуха. Мн., 2004.
- 2. Гримитлин А.М. и др. Отопление, вентиляция производственных помещений: Издательство «АВОК Северо-Зпапад», Санкт-Петербург, 2007.
- 3. Кундро Н.В., Пшеничнюк В.А. Применение текстильных воздухораспределителей в помещениях с повышенными санитарно-гигиеническими требованиями / Материалы докладов международной научно-технической конференции: ВГТУ, Витебск, 2015.
- 4. Пшеничнюк, В.А., Ланкович С.В., Королева Т.И., Преимущества использования текстильных воздуховодов для обеспечения микроклимата помещений // Инновационные технологии в промышленности: сборник материалов Всероссийской научно-практической конференции с международным участием, г. Стерлитамак, 16 декабря 2016г.: в 2 т. Стерлитамак, 2016. Т.2.

УДК 677.027.5

РАЗРАБОТКА ТЕХНОЛОГИИ ЦИФРОВОЙ ПЕЧАТИ СПОРТИВНОЙ ОДЕЖДЫ

Третьякова А.Е., доц., Сафонов В.В., проф., Зиновьева В.В., маг.

Российский государственный университет им. А.Н. Косыгина

(Технологии. Дизайн. Искусство),

г. Москва, Российская Федерация

<u>Реферат</u>. В статье рассматривалась разработка технологии цифровой печати чернилами на основе дисперсных красителей по трикотажу спортивного назначения. Показано, что предлагаемая технология позволяет получить высококачественную готовую продукцию. Получаемые отпечатки устойчивы к внешним физико-механическим воздействиям, обладают хорошими печатно-техническими показателями.

<u>Ключевые слова</u>: трикотаж, полиэфирное волокно, дисперсные красители, интенсификаторы, печатные чернила, интенсивность окраски, устойчивость к физикомеханическим воздействиям.

Спорт для широких масс — это возможность держать в высокой физической форме и тонусе. Немаловажным фактором является одежда для занятий спортом: она должна быть комфортной, облегающей и не теряющей формы. Как правило, в качестве текстильных материалов для спортивной одежды используют многослойный трикотаж, одним из компонентов которого является полиэфирное волокно. Несмотря на высокую гидрофобность, это волокно обладает высокими физико-механическими показателями, формо- и износостойкостью, что немаловажно для больших нагрузок в спорте. Благодаря таким качествам полиэфирное волокно вплетают во внешние слои трикотажа с целью обеспечения заданных параметров спортивного сортимента.

Условия для того или иного спортивного костюма варьируются в зависимости от вида спорта (водный или сухопутный, зимний или летний и т.д.), но основные требования всегда одни — высокая прочность материала к трению и натяжению, устойчивость красителей к свету и поту. Особой характеристикой стоит выделить гидрофобность материала. Современное белье для спортсменов не должно задерживать в себе пот. Типичные хлопковые футболки промокают насквозь, задерживая в себе жидкость и тяжелея. Для их высыхания потребуется значительное количество времени. Синтетика наоборот — гидрофобна. Ее волокна не способны накапливать влагу, позволяя последней пройти через ткань, дабы затем испариться. Как следствие, материя быстро высыхает.

Существует определенная трудность колорирования полиэфирного волокна, поскольку в силу высокой упаковки надмолекулярной структуры и, соответственно степени кристалличности, снижены диффузионно-сорбционные возможности красителей. Чтобы повысить накрашиваемость волокна, используются разные технологические подходы: крашение осуществляют в среде органических растворителей (неблагоприятные условия с точки зрения санитарии и экологии), под давлением в автоклавах или в среде горячего

YO «BГТУ», 2017 **281**