4. Андреевец, Ю. А. Химмотологический анализ многодвигательной системы / Ю. А. Андреевец, Е. С. Нагорный // Современные проблемы машиноведения : материалы XII Международной научно-технической конференции (научные чтения, посвященные П. О. Сухому), Гомель, 22–23 ноября 2018 года / Гомель: Гомельский государственный технический университет им. П.О. Сухого, 2018. — С. 47–49.

УДК 621.22(075.8)

АНАЛИЗ ЗАЩИТЫ ГИДРОСИСТЕМЫ ОТ ОБВОДНЕНИЯ РАБОЧЕЙ ЖИДКОСТИ

Кашперко В. Д., студ., Андреевец Ю. А., ст. преп. Гомельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

Реферат. В статье рассмотрены методы и меры защиты гидросистемы от обводнения рабочей жидкости станции. Надежная эксплуатация гидравлической станции находится в прямой зависимости от чистоты рабочей жидкости. Важной задачей является поддержание качества рабочей жидкости системы, следуя этому, были предприняты различные меры, которые обеспечивают защиту от образования разного рода эмульсий и связанных с ними последствий. Систематический мониторинг параметров жидкости позволяет оперативно выявлять признаки обводнения и принимать корректирующие меры до возникновения критических повреждений.

<u>Ключевые слова:</u> гидросистема, рабочая жидкость, гидростанция, эмульсия, обводнение масла, вода.

Правильная и качественная очистка рабочей жидкости является залогом долгой и безотказной работы гидравлической системы [1]. Рабочая жидкость гидростанции — это специальная жидкость, используемая в гидравлических системах для передачи энергии, смазки и охлаждения. Она играет важную роль в функционировании гидравлических устройств, таких как насосы, цилиндры и гидроаппаратура. При эксплуатации гидросистемы в реальных условиях, при большой разнице температур рабочей жидкости и окружающей среды могут образовываться эмульсии (рис. 1), которые являются следствием обводнения рабочей жидкости (гидравлического масла). Из этого следует ухудшение работоспособности системы, что в конечном итоге негативно влияет на долговечность гидростанции.

Вода, обычно попадает в рабочую жидкость гидравлической системы через протекающие теплообменники, сальники труб охлаждения, при конденсации стенок бака, прорыва воды водяного затвора и ухода воды из сепаратора вместе с очищенным маслом.

Попадание воды в масло часто приводит к формированию эмульсии, которая значительно ухудшает смазывающие характеристики и функциональные свойства жидкости. Это создает

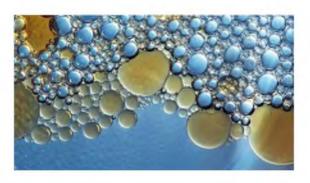


Рисунок 1 – Внешний вид возникновения эмульсии (масло в воде)

риск коррозии компонентов гидравлических систем. Кроме того, присутствие воды способствует развитию бактерий в масле. Для минимизации таких последствий необходимо строго контролировать уровень влаги: допустимая концентрация не должна превышать 0,5 % в течение всего периода эксплуатации. При превышении нормы требуются срочные меры по удалению воды из жидкости гидравлической системы.

При умеренном обводнении эффективны своевременное устранение утечек и стандартная сепарация. Однако важно учитывать тип масла: составы со щелочными

присадками чувствительны к воде, поэтому их промывка жидкостью во время очистки запрещена. Для чисто минеральных масел такая процедура допустима. Коррозия элементов гидросистемы возникает из-за окисления металлов под воздействием воды [2].

При сильном обводнении рекомендуется перекачать масло в резервуар для загрязненной жидкости, нагреть до 70–75 °C и отстаивать в течении 12–24 часа. После этого выполняется двойная сепарация с последующим возвратом жидкости в систему. Если вода и масло образуют устойчивую эмульсию, не поддающуюся разделению, единственным решением становится полная замена жидкости на новое масло.

В случаях, когда избежать обводнения невозможно, используют масла с антикоррозийными присадками, ингибиторами или эмульгаторами (рис. 2). Последние стабилизируют смесь, создавая прочную масляную пленку на поверхностях трения. Эмульгаторы действуют за счет обволакивания водных частиц масляной оболочкой.

Рисунок 2 – Внешний вид присадок различных производителей

Антикоррозионные присадки, содержащие полярные соединения, формируют молекулярный защитный слой на стальных и чугунных деталях. Этот барьер блокирует контакт воды с металлом, предотвращая окисление. Однако при наличии ржавчины присадки теряют эффективность, так как окислы препятствуют их адгезии к поверхности, что в дальнейшем может ускорить коррозию.

этом случае дальнейшее развитие коррозии сопровождается больших захватом поверхностей, углублением возникших язвин. образованием И последующем отрывом окислов железа в виде чешуек, которые, попадая в масло, вызывают абразивный износ и задиры

трущихся поверхностей. Раз образовавшись, коррозия будет прогрессировать, пока не будет устранен источник поступления в систему воды и не будут очищены коррозионные участки с помощью химических регентов (на базе фосфорной кислоты) или механическим путем.

Таким образом, контроль уровня воды, своевременная очистка и правильный выбор состава масла критически важны для сохранения работоспособности гидравлической системы станции.

Обводнение рабочей жидкости на примере гидравлической станции для подъёма и опускания зеркала и качания рамы отражателя (рис. 3) может привести к следующим проблемам.

- 1. Коррозия металла деталей гидравлического оборудования. При попадании влаги на открытые участки металла образуется ржавчина.
 - 2. Проблемы с маслом. Смешивание масла с водой образует эмульсию.
- 3. Кавитация и шум. При смешивании с водой образуются пузырьки газа, которые вызывают кавитацию и механические повреждения.
- 4. Отложения и грязь. Вода приводит к образованию шлама, который попадает в гидравлическую систему.
- 5. Снижение эффективности работы гидравлики. Из-за наличия воды давление и мощность гидравлической системы могут значительно снизиться.

Для разработанной гидростанции необходимо предусматривать следующие меры по предотвращению проникновения воды в рабочую жидкость:

- использование качественных уплотнений для защиты от внешней влаги;
- регулярная проверка гидравлической жидкости на содержание воды;
- контроль состояния резервуаров, баков или иных гидравлических емкостей во избежание конденсации при перепадах температур;
- замена масла вовремя, по мере срока службы и использование гидравлических фильтров, удаляющих влагу.

Гидростанция привода для плавного подъема и опускания зеркала и качания рамы отражателя работает на чистом минеральном масле при температуре от плюс 50 °C до плюс 55 °C при температуре окружающего воздуха от минус 40 °C до плюс 40 °C. В данном случае

УО «ВГТУ», 2025 433

необходимо принимать меры по устранению содержания эмульсии в рабочей жидкости путём добавления в рабочую жидкость антикоррозионных присадок, эмульгаторов — ингибиторов ржавления, в ином случае отстаивание жидкости в отдельных резервуарах с сепарированием всего объема рабочего масла, либо полной замены гидравлического масла.

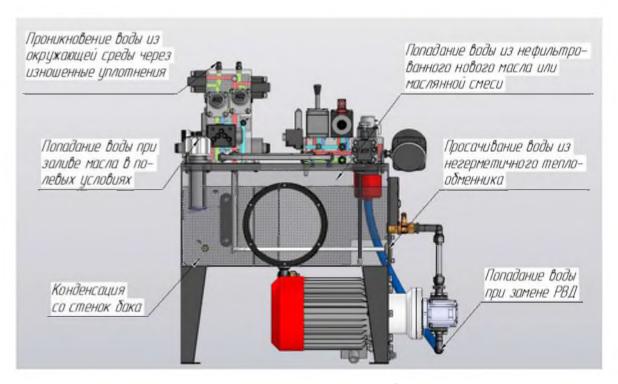


Рисунок 3 – Пути проникновения воды в рабочую жидкость

В результате анализа выявлены причины, ухудшающие свойства гидравлического масла. Установлено, что такие мероприятия как перекачка жидкости для отстаивания, фильтрация через сепаратор, использование эмульгаторов, а также применение антикоррозийных присадок помогают увеличить их защитную эффективность, повысить надёжность работы гидравлической системы и таким образом снизить затраты на техническое обслуживание и ремонт гидросистемы.

Список использованных источников

- 1. Андреевец, Ю. А., Шмырев, Д. О. Снижение затрат на производство и эксплуатацию гидросистемы при повышении качества очистки рабочих жидкостей // Современные проблемы машиноведения: материалы XII Междунар. науч.- техн. конф. (науч. чтения, посвящ. П. О. Сухому), Гомель, 22–23 нояб. 2018 г.; под общ. ред. А. А. Бойко. Гомель: ГГТУ им. П. О. Сухого, 2018. С. 50–52.
- 2. Рабочие жидкости смазки и уплотнения [Электронный ресурс]. Режим доступа: https://studfile.net/preview/3571960. Дата доступа: 05.03.2025.