Также предлагается обучить модели для следующих задач: прогнозирование продаж каждого артикула; аналитика потребностей покупателей; разработка изделия, эскизного проекта и технического рисунка, технического описания; оптимизация разработки технологической последовательности изготовления изделия; расчет износостойкости материалов и узлов г отового изделия на основе соответствующих данных предыдущих испытаний.

Такие цифровые трансформации помогут реализовать концепцию «Фабрики будущего».

Тем самым развивая современное производство для дальнейшего изготовления конкурентоспособной и кастомизированной продукции, а также способствуя поддержке отечественного технологического суверенитета.

Список использованных источников

- 1. Совина, А. Р., Державина, А. Д. Значение профессиональной ориентации и кадрового обеспечения новых профессий для легкой промышленности // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 4. Промышленные технологии. 2024. № 3. С. 55–62.
- 2. Левин, Ю. А., Полетаева, Л. П. Инновационное развитие хозяйственных систем: формирование цифровой экономики // Инновации и инвестиции. № 11, 2017. С.7–10.
- 3. Liu, K., Zeng, X., Bruniaux, P., Tao, X., Kamalha, E., Wang, J. Garment Fit Evaluation Using Machine Learning Technology. In: Thomassey, S., Zeng, X. (eds) // Artificial Intelligence for Fashion Industry in the Big Data Era. Springer Series in Fashion Business. Springer, Singapore. 2018. pp 273–288.
- Fallah Tehrani, A., Ahrens, D. Enhanced Predictive Models for Purchasing in the Fashion Field by Applying Regression Trees Equipped with Ordinal Logistic Regression. In: Thomassey, S., Zeng, X. (eds) // Artificial Intelligence for Fashion Industry in the Big Data Era. Springer Series in Fashion Business. Springer, Singapore. 2018. – pp 27–45.
- 5. Завельская, Ю. Применение ИИ в производстве одежды. URL: https://lp-magazine.ru/lpmagazine/2023/3/1230. Дата доступа: 07.12.2024.

УДК 681.5

РАЗРАБОТКА ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ ЛАБОРАТОРНОЙ УСТАНОВКИ ДЛЯ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ СВОЙСТВ ПЕРЕНОСА ЖИДКОСТИ НА ТРИКОТАЖЕ И ТКАНЯХ

Науменко А. М., доц.,Тёмкин Д. А., асп., Коронкевич Д. А., маг. Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье рассмотрены вопросы разработки измерительного преобразователя лабораторной установки для определения динамических свойств переноса жидкости в текстильных материалах с использованием измерения электрического сопротивления.

Ключевые слова: сенсор, перенос жидкости, сопротивление, измерение.

Современные текстильные технологии активно развиваются, отвечая на растущие запросы к функциональности материалов, особенно в сегментах спортивной, медицинской и профессиональной экипировки. Ключевым требованием к таким тканям становится способность к интенсивному влагоотведению и ускоренному испарению пота, что напрямую коррелируется с терморегуляцией организма, гигиеной и производительностью пользователя. Эти свойства достигаются за счет инновационных решений, включая капиллярные структуры волокон, пористые мембраны, а также биоинженерные покрытия, которые обеспечивают направленную транспортировку влаги от тела во внешние слои ткани.

В спортивной индустрии такие материалы минимизируют накопление пота на коже, предотвращая перегрев и снижая риск теплового удара во время высокоинтенсивных тренировок.

В медицинском секторе усовершенствованные ткани применяются не только в повседневной больничной одежде, но и в хирургических халатах, где сочетание антимикробной обработки с мгновенной сушкой снижает риск бактериального роста, а в постельном белье – предотвращает пролежни у лежачих пациентов.

Для специальной экипировки (пожарные костюмы, военная форма, защитная одежда металлургов) эти разработки становятся стратегически важными: они позволяют сохранять работоспособность в экстремальных температурах за счет микроклиматического баланса. Последние инновации включают фазопереходные материалы (РСМ), аккумулирующие тепло, и ткани с термохромными свойствами, адаптирующиеся к внешним условиям.

Так как применение функционального текстиля становиться все более обширно возникает необходимость оценки качества функционального текстиля. Одними из главных показателей являются гигроскопические свойства, которые характеризуют их способность поглощать и отдавать водяные пары, воду. Поэтому актуальным направлением совершенствования функционального текстиля является разработка систем оценки способности тканей к влагоотведению [1].

Методы измерения, оценки и классификации свойств переноса влаги текстильными тканями регламентированы в международных стандартах ААТСС 195 и GB 21655.2. Для проведения исследований применяется система, включающая два идентичных датчика между которыми устанавливается образец ткани. Датчик содержит 4 системы электродов, образующих кольца разного радиуса (рис. 1).

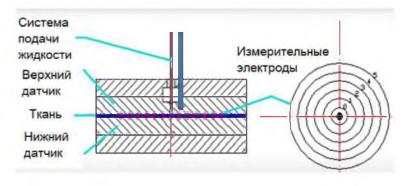


Рисунок 1 – Схема датчика

При запуске испытания через центр верхнего датчика подается жидкость объемом 0,2 мл. Электрическое сопротивления у влажного участка ткани значительно ниже сопротивления сухого участка. Поэтому процесс распространения влаги в ткани контролируется путем измерения сопротивления каждого кольца с электродами.

В результате испытаний определяется средняя арифметическая скорость распространения жидкости на поверхности ткани:

$$V_{cp} = \frac{\frac{R_1 + R_2 - R_1}{t_1 + t_1 - t_2} + \frac{R_n - R_{n-1}}{t_n - t_{n-1}}}{n},$$
(1)

где V_{cp} — средняя скорость распространения жидкости в ткани, мм/с; R_i — радиус i-ого кольца, мм; t_i — момент времени, в который происходит уменьшение сопротивления i-ого кольца, с; n — количество колец датчика.

Разработана конструкция установки, реализующая описанную методику исследований текстильных материалов. Разработана конструкция датчиков с 4 системами электродов в виде колец. Радиусы колец равны 4, 8, 16, 24 мм.

В среде разработки Codesys 3.5 разработана программа для управления установкой. Для каждого измерительного канала используется функциональный, мнемосхема которого показана на рис. 2. При нажатии на кнопку "pusk" запускается таймер, который в течении 2 минут осуществляется запись на USB-накопитель и в течении 20 секунд подается жидкость. Интервал измерения сопротивления составляет 1 с.

Для оценки эффективности работы установки проведено исследование динамических свойств переноса жидкости 3 образцов двухслойной ткани с функциональными свойствами (состав 100 % полиэфир), образец хлопчатобумажной ткани. Получены графики измерения

УО «ВГТУ», 2025 **385**

сопротивления между измерительными кольцами в относительных единицах. График измерения сопротивления хлопчатобумажной ткани представлен на рисунке 3.

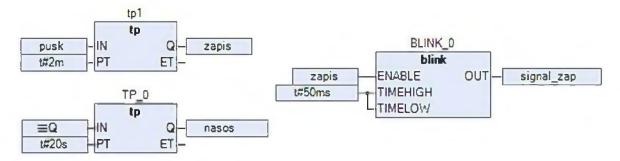


Рисунок 2 – Мнемосхема измерения сопротивления в среде Codesys 3.5

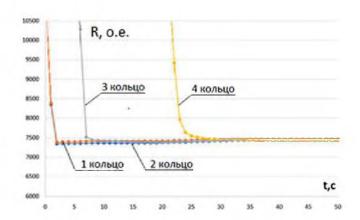


Рисунок 3 – Диаграмма распространения жидкости через кольца в хлопке

По произведенным экспериментам получены результаты измерения в таблице 1. Для всех образцов время распространения жидкости до 1 и 2 кольца составило 1 с. Следовательно, распространение жидкости до второго кольца с радиусом 8 мм происходит с высокой скоростью. Первое кольцо может служить сигнализатором начале прохождения жидкости. Для измерения данной скорости необходимо уменьшить интервал измерения сопротивления в системе.

У образцов полиэфирных тканей наблюдаются различия гигроскопических свойств верхнего и нижнего слоев, так как слои имеют

различную скорость распространения жидкости. У образца 1 полиэфирной ткани и верхнего слоя образца 2 полиэфирной ткани распространение жидкости не достигло радиуса 24 мм.

Таблица 1 –	Ірохождение жидкости в	з материале
-------------	------------------------	-------------

Образец	1 кольцо, с	2 кольцо, с	3 кольцо, с	4 кольцо, с	<i>V</i> , мм/с
П-П 1 Верх	1	1	43	-	2,05
П-П 1 Низ	1	1	5	-	2,50
П-П 2 Верх	1	1	46	-	2,04
П-П 2 Низ	1	1	7	19	1,67
П-П 3 Верх	1	1	14	63	1,46
П-П 3 Низ	1	2	3	30	2,79
Хлопок	1	1	6	22	1,68

В результате выполнения работы разработана конструкция установки для измерения скорости переноса жидкой в ткани. Установка выполнена с использованием современных компонентов промышленной автоматики, что обеспечивает хорошую точность испытаний. воспроизводимость результатов Данную систему можно использовать производственных лабораториях швейных предприятий, производящих спортивную, медицинскую и специальную одежды.

Список использованных источников

- 1. Науменко, А. М. Разработка системы измерения динамических свойств переноса жидкостей текстильных изделий / А. М. Науменко, Б. О. Муравьев // Тезисы докладов 56-й Международной научно-технической конференции преподавателей и студентов : Витебск, 19 апреля 2023 года. Витебск: Витебский государственный технологический университет, 2023. С. 177.
- 2. Исследование относительной диэлектрической проницаемости моторного масла с использованием портативного измерителя импеданса / А. А. Джежора [и др] // Инновации в текстиле, одежде, обуви (ICTAI-2022) : материалы докладов международной научнотехнической конференции, Витебск, 23–24 ноября 2022 года. Витебск: Витебский государственный технологический университет, 2022. С. 109–112.

УДК677.017.632

АНАЛИЗ МЕТОДОВ ОПРЕДЕЛЕНИЯ СКОРОСТИ ИСПАРЕНИЯ ВЛАГИ ИЗ ТКАНИ

Шеленговский В. О., асп., Шут В. Н., проф., Науменко А. М., к.т.н.Витебский государственный технологический университет,
г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье рассмотрены методы, используемые для определения скорости испарения влаги из ткани, проведен анализ и отмечены особенности приведенных методов.

<u>Ключевые слова:</u> функциональный текстиль, гигроскопичность, ткани для специальной одежды, скорости высушивания, метод воздушного потока.

В современном мире текстильная промышленность является одной из ведущих отраслей, так как текстильные изделия широко используются в различных сферах нашей жизни. В связи с этим, актуальной проблемой является разработка новых устройств и методов для улучшения качества и характеристик текстильных материалов.

Одной из ключевых характеристик текстильных изделий является их способность испарять влагу со своей поверхности. Это свойство напрямую влияет на комфорт и благополучие человека, носит критическое значение в условиях интенсивной физической активности, высоких температур, а также в профессиональных сферах.

В данной работе рассмотрены основные методы оценки скорости испарения влаги из ткани.

ГОСТ Р ИСО 13029–2014 Определение скорости сушки в динамическом режиме (метод испытаний с использованием модифицированной нагревательной плитки с регулируемым увлажнением).

Метод основан на измерении времени, необходимого для испарения 5 мл дистиллированной воды с поверхности текстильного образца в контролируемых условиях (рис. 1). Испытание проводится в динамическом режиме, имитирующем реальные условия эксплуатации (например, при контакте ткани с кожей во время физической активности).

Образцы размером 300 \times 300 мм вырезают из материала и кондиционируют при температуре 35 °C и относительной влажности 40 % в течение 12 часов. Толщина материала не должна превышать 5 мм. Образец помещают на нагревательную плитку с регулируемым увлажнением (аппаратура соответствует ИСО 11092). Устанавливают температуру 35 °C, влажность 40 % и скорость воздуха 1 м/с. Фиксируют значение непроницаемости для паров воды R в равновесном состоянии до увлажнения. Образец увлажняют 5 мл воды (температура 20 \pm 2 °C), подаваемой через устройство с высоты 50 мм в течение 5 секунд. Фиксируют момент начала сушки (t_1) – отклонение R от равновесного значения. Фиксируют момент завершения сушки (t_2) – возврат Re к 99 % от исходного значения. Время сушки рассчитывают по формуле (1). Результат выражают в секундах на 5 мл воды.

$$t = t_2 - t_1. \tag{1}$$

УО «ВГТУ», 2025 387