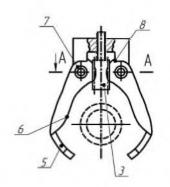
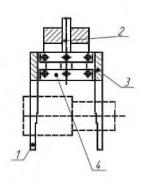
В данной диаграмме представлены 10 сущностей с использованием следующих видов связей: один ко многим, один к одному и многие ко многим.

Таким образом, были выполнены задачи начального этапа разработки информационной системы ППО студентов УО «ВГТУ».

УДК 621.865.8


# МОДЕРНИЗАЦИЯ ЗАХВАТА ПРОМЫШЛЕННОГО РОБОТА УМ160Ф2.81


#### Мироненко Н. С., студ., Белов А. А., доц.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье рассмотрены вопросы модернизации промышленного робота. Разработана новая конструкция захватного устройства.

<u>Ключевые слова:</u> модернизация, промышленный робот, захватное устройство, механизмы робота.





1 — поворотные губки; 2 — тяга привода; 3 — рейка; 4 — рычаг, 5 — срезанный профиль губок; 6 — полнотолщинные участки профиля; 7 — ось; 8 — зубчатые секторы

Рисунок 1 – Двухпальцевый захват промышленного робота УМ160Ф2.81.

Захватное устройство (3Y)на рисунке 1 имеет две пары губок 1, свободно поворотных сидящих на осях 7. Профиль губок центрирование допускает валов широком диапазоне размеров. губках выполнены зубчатые секторы 8, входящие попарно в зацепление с рейками 3. Рейки 3 связаны рычагами 4, образующими с ними шарнирный параллелограмм. Рычаги 4 шарнирно связаны с тягой 2 привода. Такое устройство создает возможность независимой работы для каждой пары губок, что необходимо при захватывании ступенчатых валов. Части 5 профиля губок 1 срезаны по толщине, части 6 имеют полную толщину. Это позволяет подхватывать и центрировать детали,

расположенные в момент захватывания со смещением, а также гарантирует центрирование ступенчатых деталей при расположении ступени в месте захватывания.

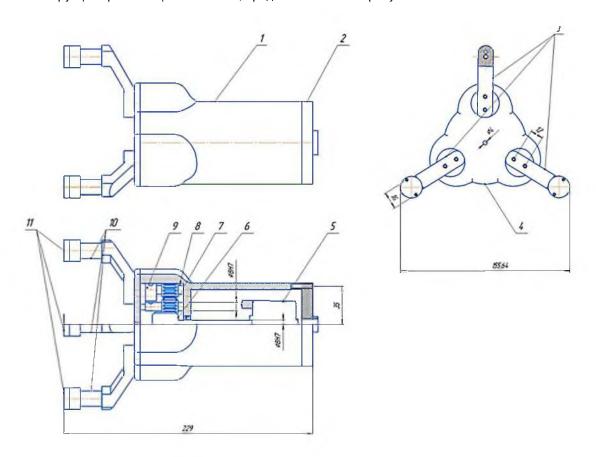
### Принцип работы

При перемещении тяги привода (2) рычаги (4) приводят в движение рейки (3), которые через зубчатые секторы (8) поворачивают губки (1).

Благодаря шарнирному параллелограмму и независимому зацеплению реек с каждой парой губок, схват может адаптироваться к ступенчатым и смещенным валам.

Срезанный профиль (5) позволяет захватывать детали, расположенные со смещением, а полнотолщинные участки (6) обеспечивают жесткость при работе с массивными заготовками.

Недостатки конструкции:


- сложность изготовления. Требуется высокая точность при производстве зубчатых секторов (8) и реек (3);
- износ зубчатого зацепления. При работе с абразивными или тяжелыми деталями возможен ускоренный износ;
  - ограниченная сила захвата. Реечный механизм может проигрывать в мощности по

УО «ВГТУ», 2025 367

сравнению с винтовыми или гидравлическими приводами;

 чувствительность к загрязнениям. Попадание стружки или пыли в зубчато-реечное зацепление может нарушить работу.

Конструкция трехпальцевого схвата, представленного на рисунке 2.



1 — корпус ; 2 — задняя крышка; 3 — пальцы; 4 — передняя крышка, 5 — мотор-редуктор; 6, 7 — зубчатые колёса; 8 — вал; 9 — палец; 10 — захватные губки; 11 — крышки пальцев; 12 — шпонка

Рисунок 2 – Трехпальцевый захват модернизированного промышленного робота УМ160Ф2.81.

Корпус – основная несущая часть схвата, обеспечивающая жесткость конструкции и крепление всех механизмов.

Крышка корпуса верхняя – защитный элемент, закрывающий приводные механизмы и обеспечивающий их стабильную работу.

Палец – подвижный элемент схвата, выполняющий непосредственный захват объекта (всего три пальца).

Крышка корпуса низа – нижняя часть корпуса, обеспечивающая защиту и крепление механизмов.

Планетарный шаговый мотор-редуктор – приводной механизм, обеспечивающий точное позиционирование и вращение пальцев.

Зубчатое колесо (ведущее) – передает крутящий момент от мотора-редуктора (5) на ведомые шестерни.

Зубчатое колесо (ведомое) – соединено с пальцами (3) и обеспечивает их синхронное движение. Вал – ось вращения, передающая усилие от зубчатых колес (6, 7) к пальцам (3).

Вращающийся механизм пальца – обеспечивает поворот пальца (3) для изменения угла захвата.

Захватная губа пальца – рабочая часть пальца, непосредственно контактирующая с объектом (может иметь мягкие накладки для защиты хрупких предметов).

Крышка захватной губы – защитный или корректирующий элемент, улучшающий контакт с объектом.

Шпонка – фиксирующий элемент, предотвращающий проворачивание зубчатых колес (6, 7) на валу (8).

#### Принцип работы

При активации планетарного шагового мотора-редуктора (5) крутящий момент передается через ведущее зубчатое колесо (6) на ведомые зубчатые колеса (7), которые приводят в движение пальцы (3). Благодаря вращающемуся механизму пальца (9) и захватным губам (10) схват может адаптироваться к форме объекта, обеспечивая равномерное распределение усилия. Шпонка (12) гарантирует надежную фиксацию зубчатых колес на валу (8), предотвращая проскальзывание.

## Преимущества и недостатки (с учётом конструкции)

Преимущества:

- высокая точность благодаря использованию шагового мотора-редуктора (5) и зубчатой передачи (6, 7):
- равномерное распределение нагрузки за счет трехточечного захвата (пальцы 3 с губами 10);
  - гибкость управления. Возможность регулировки угла захвата (вращающийся механизм 9).
     Недостатки:
- сложность обслуживания из-за наличия множества механических компонентов (шестерни 6, 7, вал 8, шпонка 12);
- зависимость от точности изготовления люфт в зубчатой передаче или износ губ (10) могут снизить надежность.

#### Вывод

Данная конструкция трехпальцевого схвата с вращающимся механизмом смыкания (9) и планетарным мотором-редуктором (5) обеспечивает высокую универсальность и точность, но требует качественного изготовления и периодического обслуживания. Дальнейшая оптимизация может включать использование композитных материалов для облегчения конструкции или внедрение датчиков силы для более точного контроля захвата.

### Список использованных источников

- 1. СофПол: GP8: [сайт]. URL: https://sofpol.ru/industrial-robots/yaskawa/light-robots/gp8 Дата доступа: 03.05.2025.
- 2. Соломенцев, Ю. М. Промышленные роботы в машиностроении. Альбом схем и чертежей: учеб. пособие для технических вузов / Ю. М. Соломенцев, К. П. Жуков, Ю. А. Павлов и др; под общ ред Ю. М. Соломенцева. М.: Машиностроение, 1986. 140 с.

УДК 004.41

# АВТОМАТИЗАЦИЯ СИСТЕМЫ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ ПОЛИКЛИНИКИ

**Недбайло М.А., студ., Быковский Д.И., ст. преп., Куксевич В.Ф., ст. преп.**Витебский государственный технологический университет,
г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье проанализирована актуальность проблемы автоматизации информационного обеспечения структур учреждений здравоохранения, рассмотрены начальные этапы разработки информационной системы поликлиники, представлены диаграммы классов и связей сущностей предметной области.

УО «ВГТУ», 2025