АНАЛИЗ СОВРЕМЕННОГО АССОРТИМЕНТА И СВОЙСТВ МАТЕРИАЛОВ ДЛЯ ПОДОШВ ИЗ ПОЛИУРЕТАНОВ

Радюк А. Н.¹, к.т.н., доц., Лукатенок П. Л.¹, асп., Дозорцев С.П.², зам. директора по производству
¹Витебский государственный технологический университет,
г. Витебск, Республика Беларусь
²ООО «Стилфлекс», г. Витебск, Республика Беларусь

<u>Реферат.</u> В работе проведен анализ современного ассортимента и свойств материалов для подошв из полиуретанов, проанализированы основные поставщики полиуретановых систем на белорусский и российский рынок, сгруппированы методы испытаний по показателям и фирмам-производителям, представлены физико-механические свойства готовых полимеров, представлены рекомендации по применению систем для подошв обуви конкретного назначения.

<u>Ключевые слова:</u> полиуретан, показатели, методы испытаний, свойства, рекомендации.

Полиуретан (ПУ) начал использоваться в обувной промышленности в 1960-х годах и с тех пор стал очень популярным материалом для производителей обуви, так как позволяет производить высококачественную, удобную и долговечную обувь по низкой цене [1].

ПУ обычно состоит из двух компонентов: полиола и изоцианата. Сочетание двух готовых к переработке жидких компонентов и других вспомогательных материалов, таких как катализаторы, вспенивающие агенты и стабилизаторы, инициирует химическую реакцию, которая приводит к созданию ПУ [2].

Как известно, полиуретановые композиции и системы подразделяются на композиции для формования подошв отдельно и для прямого литья низа на заготовки верха обуви. Производители полиуретановых композиций и систем для изготовления подошв представлены в [3–7], а также рассмотрены в [8].

В работе [9] проведен сравнительный анализ основных показателей качества полиуретановых подошвенных материалов, представлена номенклатура показателей качества, а также приведены методы испытаний. Данная работа посвящена анализу современного ассортимента и свойств материалов для подошв из ПУ.

В настоящее время широко применяются трехкомпонентные полиуретановые системы, предназначенные для изготовления микроячеистых полиуретановых эластомеров на основе сложных полиэфиров. Основными поставщиками таких ПУ систем на белорусский и российский рынки на сегодняшний день являются следующие компании: Dow Chemical; Huntsman; Xuchuan Chemical, ELAchem [10-13].

Dow Chemical была основана в 1897 году и в настоящее время входит в тройку крупнейших производителей химической продукции в мире. Компанией разработаны ПУ системы для различных типов обуви, обеспечивающие высокие технологические свойства, комфорт при ходьбе и эстетичность обуви, ее прочность, устойчивость к износу, перепадам температур и прочим неблагоприятным факторам среды; а также имеющие стабильность и простоту в переработке.

Huntsman основана в 1982 году и занимающаяся производством различных видов химической продукции более чем в 24 странах. На сегодняшний день Huntsman Polyurethanes – мировой лидер в производстве ПУ на основе MDI. Компанией «Huntsman» для изготовления подошв предлагаются ПУ системы Extra и Norma.

Трехкомпонентные ПУ системы Extra и Norma предназначены для изготовления полиуретановых эластомеров на основе сложных полиэфиров. Системы Extra применяются для производства обувных подошв специальной, повседневной, детской, модельной и спортивной обуви. Системы Norma применяются для производства низа обуви и отдельных подошв литьевым методом. ПУ системы представляют собой композиции из трех компонентов:

- компонент 1 сложный полиэфир;
- компонент 2 активатор, представляющий собой смесь функциональных добавок: отвердителей, катализаторов, пеностабилизаторов, пенообразователей;
 - компонент 3 изоцианатный преполимер на основе 4,4'-дифенилметандиизоцианата [45].

УО «ВГТУ», 2025 **269**

Xuchuan Chemical зарегистрировано в 2007 году как крупнейший производитель полиуретановых смол для обувной и кожевенной промышленности в Китае и на сегодняшний день входит в число основных поставщиков в области ПУ. Для подошв обуви выделяют такие продукты как полиэфир, полиэстер средней жесткости и мягкий, холодостойкий полиэстер и высокой прочности, а также продукты для получения прозрачных и защитных подошв обуви [49].

Компания ELAchem специализируется на производстве ПУ систем, в основном предназначенных для обувной промышленности [47].

В технической информации на ПУ системы вышеперечисленных компаний представлены физико-механические характеристики готового продукта и методы испытаний, по которым определяется показатель свойств.

В таблицу 1 сгруппированы методы испытаний по показателям и фирмам-производителям.

Таблица 1 – Методы испытаний физико-механических характеристик готового продукта

Показатель	Dow Chemical	Huntsman	Xuchuan Chemical	ELAchem
Плотность, $ ho$, кг/м 3	DIN 53420	DIN EN ISO 845, FOCT 267-73	EN ISO 845	EN ISO 845
Твердость, H , после 15 сек., Шор А	DIN 53505	DIN ISO 7619, FOCT 263-75	DIN 53505	DIN 53505
Прочность на разрыв / при растяжении, f_{p} , МПа	DIN 53543	_	DIN 53504	DIN 53504
Удлинение при разрыве, $arepsilon_{p'}$ %	DIN 53543	_	DIN 53504	DIN 53504
Прочность на раздир, $T_{\!\scriptscriptstyle s}$, Н/мм	DIN 53543	-	DIN 53543	DIN 5354367
Истираемость (10 N нагрузка), ΔV , мг потери веса	DIN 53516	DIN ISO 4649, FOCT 426-77	-	DIN 53516
Прочность на изгиб или многократный изгиб, N , количество изгибов	DIN 53543	DIN ISO 178, ΓΟCT 422-75	DIN 53543	ASTM 1052/55

По данным таблицы можно заметить, что для одних и тех же показателей применяются разные методы испытаний их свойств. Стандарты DIN разработаны в начале 1920-х годов немецким институтом стандартизации и являются одними из самых известных и широко используемых в мире, так как включают в себя широкий спектр параметров и характеристик, таких как размеры, материалы, прочность, температура и другие параметры. DIN-EN-ISO — специальное государственное издание в Германии, которое не подразумевает внесение изменений в EN и ISO. ASTM — стандарты американского общества специалистов по испытаниям и материалам. ГОСТ — региональный стандарт, принятый Межгосударственным советом по стандартизации, метрологии и сертификации Содружества Независимых Государств.

Физико-механические свойства готовых полимеров трехкомпонентных ПУ систем представлены в таблице 2.

Таблица 2 – Физико-механические свойства готовых полимеров

Показатель		Н,				ΔV , мг	N	
Фирма	$oldsymbol{ ho}$, кг/м 3	усл. ед.	$f_{_{p}}$, МПа	ε _p , %	T_{s}		при +С	при -С
Dow Chemical	300–1000	40–65	4,7–16,5	250–700	4,0–19,5	50–200	>30000 -100000	>30000– 50000
Huntsman	400–1000	45–65	_	_	_	100–200	>30000–50000	
Xuchuan Chemical	300–1100	43–72	2,9–12,0	250–750	10,0–42,0	_	>50000-100000	
ELAchem	370–1100	42–63	>3,8–5	>250-450	4,0–19,5	<100–150	50000	>30000– 50000

По данным таблицы 2 можно заметить, что наибольшую прочность при разрыве, меньшую истираемость имеют ПУ системы фирмы Dow Chemical, наибольшую прочность при раздире, высокую прочность при изгибе – Xuchuan Chemical.

Необходимо отметить, что имея приблизительно одинаковый состав трехкомпонентные ПУ системы значительно отличаются по физико-механическим свойствам, в связи с этим и есть и разные рекомендации к применению готовых полимеров: в качества подошв конкретного вида обуви, в виде однослойной подошвы, в качестве промежуточного слоя подошвы, внешнего (наружного, ходового) слоя двухслойной подошвы, однослойной или двухслойной подошвы. Однако не всегда учитываются рекомендации фирмы-производителя, в связи с чем ухудшается и качество готовых изделий. Так, например, не рекомендуется использовать ПУ системы, предназначенные для летней повседневной обуви для изготовления морозоустойчивых подошв, так как это может повлечь за собой возникновение таких дефектов в обуви как «трещина подошвы» и «преждевременный износ материала подошвы». В связи с этим очень важно соблюдать оптимальное соотношения компонентов А и Б в литьевой композиции, рекомендованное производителем, а также правильность соблюдения предварительной подготовки этих компонентов перед смешением и применять ПУ систем по их назначению.

Список использованных источников

- 1. Rajic, I., Govorcin Bajsic, E., and Holjevac Grguric, T. Application of polyurethane in the production of shoe soles // Casopis Koza & Obuca. 2020. 69(1). pp. 7–9.
- 2. D. Capanidis The influence of hardness of polyurethane on its abrasive wear resistance // Tribologia. 2016. 268(4). pp. 29–39.
- 3. Никитина, Л. Л., Гарипова, Г. И., Гаврилова, О. Е. Полиуретаны в производстве обуви // Вестник Казанского технологического университета. 2011. № 22. С. 59–61.
- 4. Никитина, Л. Л., Гаврилова, О. Е. Полиуретановые подошвы // Вестник Казанского технологического университета. 2011. № 22. С. 56–58.
- 5. Гарипова, Г. И. Современные полимерные материалы для низа обуви / Г. И. Гарипова, Л. Р. Фатхуллина, Ю. А. Коваленко // Вестник Казан. технолог. ун-та. 2013. Т. 16, №23. С. 92–94.
- 6. Никитина, Л. Л. Современные полимерные материалы, применяемые для низа обуви / Л. Л.Никитина, Г. И. Гарипова, О. Е. Гаврилова // Вестник технологического университета. 2011. Т. 14, № 6 С.150–155.
- 7. Газизянов, Р. И., Гарипова, Г. И., Нигметзянова, А. М. Современные полимерные материалы для низа обуви // Новые технологии и материалы легкой промышленности. 2019. C. 189—193.
- 8. Радюк, А. Н., Ковальчук, Е. А., Буркин, А. Н. Показатели физико-механических свойств полиуретановых систем, под общ. ред. Буркина А. Н., Материалы для подошв обуви на основе отходов производства, Витебск, 2022. С. 23–24.
- 9. Радюк, А. Н. Диагностика свойств пенополиуретанов для низа обуви / А. Н. Радюк // Инновации в текстиле, одежде, обуви (ICTAI-2024): материалы докладов международной научно-технической конференции, Витебск, 21–21 ноября 2024 / ВГТУ. Витебск, 2024.
- 10. The Dow Chemical Company [электронный ресурс]. Режим доступа: https://www.dow.com/en-us.html. Дата доступа: 10.04.2025.
- 11. Huntsman Corporation [электронный ресурс]. Режим доступа: https://huntsman-nmg. com/. Дата доступа: 10.04.2025.
- 12. ELAchem [электронный ресурс]. Режим доступа: https://www.elachem.com/it/. Дата доступа: 10.04.2025.
- 13. Xuchuan Chemical [электронный ресурс]. Режим доступа: https://www.chinaxuchuan.com/en/. Дата доступа: 10.04.2025.

УО «ВГТУ», 2025 **271**