По результатам исследований антимикробных свойств тканей можно сделать вывод, что бактерицидными свойствами по отношению к высокопатогенным микроорганизмам обладает образец 7 с серебряным нанопокрытием толщиной 350 нм и образец 5 с медным нанопокрытием толщиной 600 нм. Кроме этого текстильные материалы с наночастицами серебра и меди оказывают редуцирующее влияние на штаммы Staphylococcus aureus и Escherichia coli при невысоких микробных нагрузках на протяжении 24 часов. При высокой микробной обсемененности данные металлические нанопокрытия оказываются малоэффективными в сравнении антибиотиками И цитостатиками. Установлено. что антимикробная активность серебряного наноструктурированного покрытия на ткани выше, чем медного. Проведенные бактериологические исследования in vitro явно продемонстрировали, что антимикробная активность металлизированных тканей находится в прямой зависимости от использованного металла для нанопокрытия. Полученные экспериментальные данные подтвердили отсутствие выраженного антимикробного эффекта у тканей с напылением алюминия независимо от структуры и состава тканого материала.

Список использованных источников

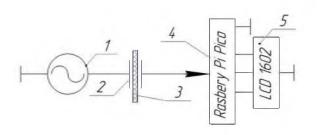
- 1. Коган, А. Г. Анализ свойств металлизированных тканей специального назначения/ А. Г. Коган, Е. Г. Замостоцкий, В. Ю. Сергеев, В. В. Сюборов // Сборник научных трудов посвящен 100-летию со дня рождения П. В. Власова, Москва, 14-16 мая 2011 г. / МГТУ им. А.Н. Косыгина; редкол.: С. Д. Николаев (гл. ред.). Москва, 2011. С. 202–210.
- 2. Макарова, Н. А. Современные антимикробные материалы на текстильных носителях / Н. А. Макарова, Б. А. Бузов, В. Ю. Мишаков, Б. В. Заметта // Текстильная промышленность. – 2002. – № 2. – С. 32–33.
- 3. Толстых, М. П. Теоретические и практические аспекты заживления ран: монография / М. П. Толстых и др. М.: Дипак., Москва, 2007. 96 с.
- 4. Инструкция по применению методов определения чувствительности микроорганизмов к антибактериальным препаратам: утв. М-вом здравоохранения Респ. Беларусь 14.12.2008. Минск : Респ. центр гигиены, эпидемиологии и обществ. здоровья, ГУ «Научно-исследовательский институт эпидемиологии и микробиологии» Министерства здравоохранения Республики Беларусь, ГУО «Белорусская медицинская академия последипломного образования». 2009. 82 с.
- 5. Percival, B. Bacterial resistance to silver in wound care / B. Percival // J. Hospital Infect. 2005. № 60. P. 1–7.

УДК 677.017.57

ПОСТРОЕНИЕ ГРАДУИРОВОЧНЫХ ГРАФИКОВ ДЛЯ ИЗМЕРИТЕЛЬНОГО СТЕНДА ПО ОПРЕДЕЛЕНИЮ НЕРОВНОТЫ СМЕШИВАНИЯ МАТЕРИАЛОВ ЁМКОСТНЫМ МЕТОДОМ

Яснев Д. А., асп., Рыклин Д. Б., д.т.н., проф.
Витебский государственный технологический университет,
г. Витебск, Республика Беларусь

<u>Реферат.</u> Статья посвящена получению градуировочных графиков для измерительного стенда по определению неровноты смешивания материалов ёмкостным методом. В результате статистической обработки экспериментальных данных была получена модель для вычисления емкости конденсатора на основании информации о напряжении для частот в диапазоне от 160 кГц до 12 МГц..


<u>Ключевые слова:</u> неровнота смешивания; ёмкостной метод; диэлектрическая проницаемость; частота электрического поля конденсатора; напряжение; ёмкость.

УО «ВГТУ», 2025

В текущее время на мировой арене наблюдается повышенный спрос на текстильные материалы. Данный спрос, в том числе, обусловлен переходом от традиционного текстиля к технологичному — созданию материалов с повышенными эксплуатационными характеристиками для различных отраслей экономики, включая даже здравоохранение и оборонный комплекс. Таким образом, ожидается рост в потреблении текстиля, который по итогам 2025 года должен возрасти на 9,6 млрд долларов США в отношении к 2024 году, а в 2034 году при темпе роста 4,9 % плановый спрос составит 330,5 млрд долларов США. Стоит отметить, что порядка 70 % рынка составляет смешанная пряжа [1]. Смешивание различных видов сырья позволяет получать заданные характеристики конечного продукта, однако достижение требуемого уровня качества возможно только при равномерном распределении компонентов в смеси.

Существующие рекомендации по оценке неровноты смешивания компонентов в текстильных материалах достаточно трудоёмки и носят разрушающий характер способа контроля, в то время как методика, основанная на емкостном способе, имеет ряд преимуществ над традиционными, однако её реализация требует разработки измерительной базы [2].

Для пробации ранее разработанной теории [3] изготовлен стенд, позволяющий воспроизводить синусоидальные импульсы с частотой периода до 30МГц [4]. Фиксируемым параметром при проведении испытаний с использованием стенда является напряжение на конденсаторе, однако исходя из опыта предыдущих исследований было выявлено, что наиболее приемлемым сигналом для анализа является емкость конденсатора. В связи с этим было принято решение о необходимости получения модели, позволяющей однозначно интерпретировать фиксируемые значения напряжения с переводом их в значения емкости.

1 – генератор частот;
2 – конденсатор;
3 – объект контроля;
4 – программируемый контроллер;
5 – графический дисплей

Рисунок 1 — Блочная схема измерительного стенда Выполнение поставленной задачи требует последовательной замены изначального конденсатора поз. 2 и объекта контроля поз. 3 на рисунке 1 на конденсаторы известной емкости для имитации изменения емкости посредствам ввода в конденсатор объекта контроля.

В исследовании использовались конденсаторы следующих номиналов: 1,0; 2,2; 3,3; 5,1; 6,8; 8,2; 9,1; 10; 12; 15 и 20 пФ.

Работа проводилась в диапазоне частот от 2 кГц до 30 МГц, однако по итогам статистической обработки полученных значений, наиболее приемлемым диапазоном стал 160 кГц — 12 МГц. Усредненные полученные значения по четырем повторностям представлены в таблице 1.

Таблица 1 – Значения напряжения, полученные при различных сочетаниях емкости конденсатора и частоты электрического поля

		Частота									
		160 кГц	320 кГц	640 кГц	1 МГц	2 МГц	4 МГц	6 МГц	8 МГц	12 МГц	
Емкость, пФ	1	0,03516	0,03524	0,04131	0,04664	0,04750	0,04715	0,04661	0,04499	0,04008	
	2,2	0,03427	0,03896	0,05177	0,05765	0,06082	0,05983	0,05894	0,05533	0,04592	
	3,3	0,03675	0,04571	0,06237	0,07088	0,07276	0,07269	0,06895	0,06330	0,05291	
	5,1	0,04069	0,05438	0,07188	0,08449	0,08696	0,08569	0,08451	0,07900	0,06359	
	6,8	0,04659	0,06396	0,08755	0,09700	0,10652	0,10355	0,09485	0,09165	0,07361	
	8,2	0,04932	0,06959	0,09583	0,11302	0,12024	0,11124	0,10577	0,10132	0,08047	
	9,1	0,05040	0,07435	0,10316	0,11525	0,12359	0,11454	0,10847	0,10343	0,08389	
	10	0,05405	0,07923	0,10653	0,12361	0,12988	0,11586	0,11281	0,11202	0,08993	
	12	0,05838	0,08995	0,12344	0,14094	0,15116	0,13279	0,12230	0,12450	0,10132	
	15	0,06597	0,10335	0,13881	0,16165	0,16907	0,15471	0,14481	0,14246	0,12676	
	20	0,07585	0,12440	0,17213	0,19774	0,20602	0,18687	0,18256	0,17690	0,15820	

Измеренные данные были обработаны с использованием пакета программ Statistic for Windows, в результате чего получены коэффициенты следующей регрессионной модели, позволяющей осуществлять перевод значений напряжения в значения емкости

$$C = a_0 + a_1 U, \tag{1}$$

где C – емкость, пФ; U – напряжение, В; $a_{_{0}}$, $a_{_{l}}$ – коэффициенты регрессии. Полученные значения коэффициентов представлены в таблице 2.

Таблица 2 – Значения коэффициентов регрессионной модели

	Частота										
	160 кГц	320 кГц	640 кГц	1 МГц	2 МГц	4 МГц	6 МГц	8 МГц	12 МГц		
a_{θ}	0,03034	0,03021	0,03839	0,04304	0,04552	0,04741	0,04539	0,04188	0,03127		
$a_{_{I}}$	0,00231	0,00482	0,00682	0,00793	0,00835	0,00716	0,00681	0,00684	0,00618		

На основании формулы 1, данных из таблицы 1 и 2 были построены градуировочные графики, которые показаны на рисунке 2. Градуировочные графики позволяют оперативно и с достоверной точностью (минимальный коэффициент детерминации модели на выбранных частотах составил 0,992) производить конвертацию фиксируемого значения в требуемый параметр.

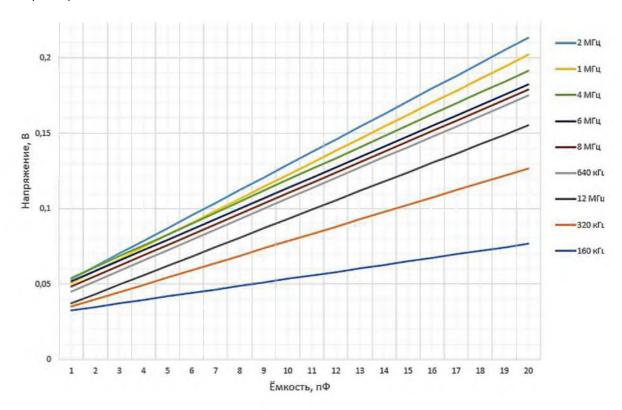


Рисунок 2 – Градуировочные графики изменения напряжения при увеличении ёмкости на различных частотах

Дальнейшим направлением работы является проведение исследований о влиянии различных по составу и массе материалов при различных частотах, выбор критериев для определения неровноты смешивания текстильных материалов, и как следствие, уточнение модели [3], позволяющей определить содержание каждого из составляющих материалов в общем объёме смешанной пряжи.

УО «ВГТУ», 2025

Планируемым результатом работы является определение диапазона масс проб, в котором конструкция и размеры разработанного конденсатора будут обеспечивать его достаточную чувствительность к изменению массы пробы при высоких частотах, а также ее массы и состава при низких частотах.

Список использованных источников

- 1. Global Market Insights Technical Textiles Market Size –By Material, Type, Application Industry Analysis, Share, Growth Forecast, 2025-2034 [Электронный ресурс]. Режим доступа: https://www.gminsights.com/industry-analysis/technical-textiles-market. Дата доступа: 29.03.2025.
- 2. Яснев, Д. А. Совершенствование измерительного стенда для определения неровноты смешивания материалов ёмкостным методом/ Д. А. Яснев, Д. Б. Рыклин // XXI Всероссийская научно-практическая конференция для студентов и молодых ученых с международным участием «Новые технологии и материалы легкой промышленности». 2025.
- 3. Рыклин, Д. Б. Способ определения неровноты смешивания компонентов в неоднородных волокнистых продуктах / Д. Б. Рыклин, Е. А. Авсеев // Вестник ВГТУ. 2011. №1 (20). С. 83–88.
- 4. Chipdip DG1032Z, Генератор сигналов до 30Мгц + встроенный частотомер [Электронный ресурс]. Режим доступа: https://www.chipdip.by/product/dg1032z. Дата доступа: 29.03.2025.

Работа выполнялась в рамках стартап-гранта УО «ВГТУ» (конкурс стартап-грантов УО «ВГТУ» для молодых ученых на выполнение научно-исследовательских работ докторантами, аспирантами, соискателями и студентами на 2025 год).

УДК 677.076.75

АНАЛИЗ АССОРТИМЕНТА ТЕХНИЧЕСКИХ ШНУРОВ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Зайцева Н. С.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В статье рассмотрены области технического текстиля и выявлен комплекс требований, предъявляемый к техническим шнурам для изготовления изделий специального назначения.

<u>Ключевые слова:</u> шнуры, область технического текстиля, комплекс требований, специальные свойства.

Технический текстиль (в широком смысле) — это текстильные материалы и изделия, изготовленные в первую очередь из-за их технических и эксплуатационных свойств, а не эстетических или декоративных характеристик [1]. Такое краткое описание явно оставляет значительный простор для толкования, особенно, когда все большее количество текстильных изделий в равной степени сочетает в себе как эксплуатационные, так и декоративные свойства.

Шнуры как один из сегментов рынка технического текстиля еще более узконаправлены в своем функциональном предназначении, так как данная группа текстильной промышленности как правило разрабатывается и производится под определенные критерии конечного потребления. С учетом требований заказчика шнуры могут быть эластичные с использованием латексных нитей, прикладные с текстильным сердечником, высокопрочные для промышленных работ и альпинизма, хозяйственные для использования в домашнем и сельском хозяйстве, огнестойкие для специальной одежды и обуви и прочие. Функции, свойства и технические критерии к изготовлению шнуров будут напрямую зависеть от конечного применения этого изделия, поэтому