РАЗДЕЛ 4 ТЕХНИЧЕСКИЕ НАУКИ

4.1 Технология и материаловедение текстильного производства

УДК 677.017:669.058.4

ИССЛЕДОВАНИЕ БАКТЕРИЦИДНЫХ СВОЙСТВ ТКАНЕЙ С МЕТАЛЛИЧЕСКИМИ НАНОСТРУКТУРИРОВАННЫМИ ПОКРЫТИЯМИ

Замостоцкий Е. Г. докторант, к.т.н., доц.

Витебский государственный технологический университет, Международный университет «МИТСО», г. Витебск, Республика Беларусь

<u>Реферат.</u> Приведены результаты экспериментальных исследований некоторых зависимостей бактерицидных свойств тканей от состава металлических наноструктурированных покрытий.

<u>Ключевые слова:</u> наноструктурированные покрытия, бактериологические свойства, ткани, серебро, алюминий и медь.

В настоящее время разработка текстильных материалов со специальными свойствами является одним из наиболее перспективных направлений развития ассортимента материалов технического и медицинского назначения. Один из методов получения новых свойств текстильных материалов является их металлизация — нанесение тонких слоев различных металлов и сплавов [1].

На протяжении многих веков повязки применялись главным образом для остановки кровотечения и защиты раны. В настоящее время благодаря достижениям науки появились новые возможности целенаправленного и дифференцированного использования свойств современных перевязочных средств на различных этапах процесса раневого заживления [2].

Для обеспечения оптимального заживления раны перевязочное средство должно эффективно удалять избыток раневого экссудата и его токсических компонентов, обеспечивать длительное высвобождение антимикробного агента, а также предотвращать вторичное инфицирование раны [3].

Целью данной работы является выявление зависимостей бактерицидных свойств тканей от состава металлических наноструктурированных покрытий.

Нанесения наноструктурированных покрытий меди, серебра и алюминия на ткани осуществлено в НИЦ «Плазмотег» ФТИ НАН Беларуси на модернизированной вакуумно-плазменной установке УВНИПА-1-001. В качестве текстильной основы для нанесения покрытий выбраны 4 вида ткани (табл. 1).

Медицинские испытания текстильных материалов с металлическими нанопокрытиями проводились на базе лаборатории НИИ прикладной ветеринарной медицины и биотехнологий с целью выявления антибактериального эффекта предоставленных образцов. В таблице 1 приведены характеристики исследуемых образцов тканей.

Программа и методика медицинских испытаний составлена с учетом требований и методов испытаний, установленных в соответствии с НТД [4, 5].

Антибактериальный эффект опытных образцов проверяли стандартными методами с помощью коллекционных тест-культур: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923.

В качестве анализируемого биологического материала выбрана взвесь микроорганизмов в физиологическом растворе. Концентрация (КОЕ/мл) определялась по оптическому стандарту мутности бактерий ГИСК им. Тарасевича, г. Москва.

Определение антимикробной активности исследованных образцов происходило методом диффузии в агар. Определение величины диаметров зон подавления роста микроорганизмов

УО «ВГТУ», 2025

происходило под микроскопом при помещении фрагментов материала, нанесенных в виде дисков диаметром 6,5 мм на поверхность плотной питательной среды, инокулированной соответствующими тест-штаммами микроорганизмов. Меры предосторожности при исследовании выполнялись в соответствии с мерами, необходимыми при работе с микроорганизмами 3–4 групп патогенности.

Таблица 1 – Характеристики исследуемых образцов тканей

№ образца	Состав ткани	Материал покрытия	Толщина покрытия, нм
1	вискоза	медь	400
2	хлопок + полиэфир	медь	400
3	полиэфир	алюминий	300
4	полиамид + полиэфир	-	-
5	полиамид + полиэфир	медь	600
6	хлопок + полиэфир	-	-
7	вискоза	серебро	350

Рисунок 1 — Питательная среда с тестштаммами Escherichia coli в чашках Петри после 24 часов экспозиции на образцах текстильных материалов с металлическими наноструктурированными покрытиями

На рисунке 1 показаны образцы тканей после 24 часов экспозиции с металлическими нанопокрытиями, которые были помещены в питательную среду с тест-штаммами Escherichia coli.

Как видно из рисунка вокруг образца 7 есть зона подавления роста микроорганизмов диаметром 14–15 мм, а вокруг образца 5 есть зона подавления роста микроорганизмов диаметром 7–9 мм, тогда как на остальных образцах данная зона полностью отсутствует.

В таблице 2 приведены результаты бактериологических исследований антимикробных свойств выбранных образцов тканей после 48 часов.

Как видно из таблицы, вокруг образца 7 есть зона подавления роста микроорганизмов диаметром 1–3 мм, а вокруг образца 5 есть зона подавления роста микроорганизмов Escherichia coli диаметром 1–2 мм, тогда как на остальных образцах данная зона полностью отсутствует.

Таблица 2 – Результаты бактериологических исследований после 48 часов

No estratus	Зона подавления роста микроорганизмов, мм		
№ образца	Escherichia coli	Staphylococcus aureus	
1	отсутствует	отсутствует	
2	отсутствует	отсутствует	
3	отсутствует	отсутствует	
4	отсутствует	отсутствует	
5	1–2	отсутствует	
6	отсутствует	отсутствует	
7	2–3	1–2	

По результатам исследований антимикробных свойств тканей можно сделать вывод, что бактерицидными свойствами по отношению к высокопатогенным микроорганизмам обладает образец 7 с серебряным нанопокрытием толщиной 350 нм и образец 5 с медным нанопокрытием толщиной 600 нм. Кроме этого текстильные материалы с наночастицами серебра и меди оказывают редуцирующее влияние на штаммы Staphylococcus aureus и Escherichia coli при невысоких микробных нагрузках на протяжении 24 часов. При высокой микробной обсемененности данные металлические нанопокрытия оказываются малоэффективными в сравнении антибиотиками И цитостатиками. Установлено. что антимикробная активность серебряного наноструктурированного покрытия на ткани выше, чем медного. Проведенные бактериологические исследования in vitro явно продемонстрировали, что антимикробная активность металлизированных тканей находится в прямой зависимости от использованного металла для нанопокрытия. Полученные экспериментальные данные подтвердили отсутствие выраженного антимикробного эффекта у тканей с напылением алюминия независимо от структуры и состава тканого материала.

Список использованных источников

- 1. Коган, А. Г. Анализ свойств металлизированных тканей специального назначения/ А. Г. Коган, Е. Г. Замостоцкий, В. Ю. Сергеев, В. В. Сюборов // Сборник научных трудов посвящен 100-летию со дня рождения П. В. Власова, Москва, 14-16 мая 2011 г. / МГТУ им. А.Н. Косыгина; редкол.: С. Д. Николаев (гл. ред.). Москва, 2011. С. 202–210.
- 2. Макарова, Н. А. Современные антимикробные материалы на текстильных носителях / Н. А. Макарова, Б. А. Бузов, В. Ю. Мишаков, Б. В. Заметта // Текстильная промышленность. – 2002. – № 2. – С. 32–33.
- 3. Толстых, М. П. Теоретические и практические аспекты заживления ран: монография / М. П. Толстых и др. М.: Дипак., Москва, 2007. 96 с.
- 4. Инструкция по применению методов определения чувствительности микроорганизмов к антибактериальным препаратам: утв. М-вом здравоохранения Респ. Беларусь 14.12.2008. Минск : Респ. центр гигиены, эпидемиологии и обществ. здоровья, ГУ «Научно-исследовательский институт эпидемиологии и микробиологии» Министерства здравоохранения Республики Беларусь, ГУО «Белорусская медицинская академия последипломного образования». 2009. 82 с.
- 5. Percival, B. Bacterial resistance to silver in wound care / B. Percival // J. Hospital Infect. 2005. № 60. P. 1–7.

УДК 677.017.57

ПОСТРОЕНИЕ ГРАДУИРОВОЧНЫХ ГРАФИКОВ ДЛЯ ИЗМЕРИТЕЛЬНОГО СТЕНДА ПО ОПРЕДЕЛЕНИЮ НЕРОВНОТЫ СМЕШИВАНИЯ МАТЕРИАЛОВ ЁМКОСТНЫМ МЕТОДОМ

Яснев Д. А., асп., Рыклин Д. Б., д.т.н., проф.
Витебский государственный технологический университет,
г. Витебск, Республика Беларусь

<u>Реферат.</u> Статья посвящена получению градуировочных графиков для измерительного стенда по определению неровноты смешивания материалов ёмкостным методом. В результате статистической обработки экспериментальных данных была получена модель для вычисления емкости конденсатора на основании информации о напряжении для частот в диапазоне от 160 кГц до 12 МГц..

<u>Ключевые слова:</u> неровнота смешивания; ёмкостной метод; диэлектрическая проницаемость; частота электрического поля конденсатора; напряжение; ёмкость.

УО «ВГТУ», 2025