Список использованных источников

- 1. Цифровая экономика и искусственный интеллект: новые вызовы современной мировой экономики: монография / под ред. К. В. Екимовой, С. А. Лукьянова, Е. Н. Смирнова. Москва: Издательский дом ГУУ, 2019. 180 с.
- 2. Стратегии развития международного менеджмента в условиях глобализации: колл. Монография. Ставрополь: Логос, 2019. 301 с.
- 3. Калачев, М. А. Инновации налогового администрирования в условиях цифровой трансформации/ М. А. Ка Калачев, Д. А. Дедкова // Анализ состояния и перспективы развития экономики России. / Материалы VIII Всероссийской молодежной научнопрактической конференции (с международным участием). Иваново, 2024. С. 206–209.

УДК 658.8.012.2

НАПРАВЛЕНИЯ РАЗВИТИЯ ПРОЦЕССНОГО УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ НА РЫНКЕ ЭЛЕКТРОТЕХНИЧЕСКОЙ ПРОДУКЦИИ

Хохолуш М. С., к.п.н., доц.

ФГБОУ ВО «Уральский государственный экономический университет», г. Екатеринбург, Российская Федерация

<u>Реферат</u>. Статья посвящена обоснованию элементов процессного управления в деятельности организации на рынке электротехнической продукции. Произведено описание структурных элементов системы процессного управления и даны рекомендации по ее внедрению.

<u>Ключевые слова</u>: процессное управление, реинжиниринг, протоколы, элементы бизнеспроцесса.

Процессное управление организацией на рынке электротехнической продукции включает в себя комплекс мероприятий, направленных на эффективное функционирование и развитие компании с учетом специфики отрасли. Данный подход основывается на оптимизации всех ключевых бизнес-процессов, улучшении взаимодействия между подразделениями и повышении конкурентоспособности компании на рынке в целом.

Основные аспекты процессного управления для компании, работающей в сфере производства и реализации электротехнической продукции предусматривают следующие направления развития [1].

- 1. Идентификация и описание ключевых бизнес-процессов:
- продуктовый процесс от разработки и производства до поставки готовой продукции;
- логистические процессы включая управление закупками, хранение, транспортировку и распределение;
- процессы продаж взаимодействие с клиентами, обработка заказов, маркетинговые и рекламные активности;
 - сервисные процессы послепродажное обслуживание и техническая поддержка.
 - 2. Оптимизация производственных процессов:
- внедрение стандартов качества ISO, использование передовых технологий производства для снижения издержек;
- автоматизация процессов на производственных участках и линиях в целях повышения скорости выпуска продукции и снижении процента брака.
 - 3. Управление цепочкой поставок:
 - эффективное управление запасами, учет потребностей в сырье и комплектующих;
- оптимизация отношений с поставщиками, заключение выгодных контрактов и поддержание взаимовыгодных долгосрочных партнерских отношений.
 - 4. Управление качеством:
- создание системы контроля качества на всех этапах от разработки до реализации продукции;
 - внедрение методик для постоянного улучшения продукции, таких как «шесть сигм» в

УО «ВГТУ», 2025

целях минимизации дефектов и повышения удовлетворенности клиентов.

- 5. Инновации и разработки:
- исследования и разработки новых электротехнических продуктов для достижения конкурентных преимуществ;
- внедрение новых технологий и материалов, таких как IoT (интернет промышленных вещей) или smart (умные) технологии в производстве электротехнической продукции [2];
 - 6. Маркетинг и взаимодействие с клиентами:
- разработка стратегии продвижения продукции на рынке, выявление целевой аудитории, использование различных каналов сбыта (онлайн и офлайн) [3];
- развитие взаимодействия с клиентами, предоставление технической консультации, улучшение сервиса.
 - 7. Кадровое управление и обучение:
- обучение сотрудников, повышение их квалификации, совершенствование системы мотивации;
- создание команды профессионалов, способной эффективно решать задачи на всех уровнях компании.
 - 8. Использование современных информационных и цифровых технологий [4]:
- внедрение ERP-систем для автоматизации всех аспектов деятельности, включая управление запасами, логистику и производство;
- анализ данных и бизнес-аналитика для принятия обоснованных управленческих решений.

Внедрение процессного управления в целом должно способствовать улучшению координации между различными подразделениями компании, ускорению принятия решений и повышению гибкости компании. В условиях динамично развивающегося рынка электротехнической продукции важно постоянно адаптироваться к изменениям спроса, технологическим новшествам и требованиям регулирующих органов.

Отдельно стоит остановится на сравнительном анализе инструментов развертывания функции качества (QFD – Quality Function Depoyment) на предприятиях рынка электротехнической продукции в рамках процессного подхода к управлению.

Развертывание функции качества (QFD) является одним из важных инструментов управления качеством, который помогает предприятиям преобразовывать требования клиентов в технические характеристики продукта или услуги [5]. Процессный подход к управлению фокусируется на улучшении бизнес-процессов с тем, чтобы достичь целей организации наиболее эффективным способом. Сочетание QFD и процессного подхода позволяет интегрировать качество в каждый этап жизненного цикла продукции, обеспечивая соответствие конечного результата ожиданиям потребителей [6].

Среди основных инструментов развертывания функции качества следует выделить следующие (табл. 1).

Таблица 1 – Инструменты развертывания функции качества

Наименование инструмента	Краткая характеристика	Преимущества	Недостатки
Матрица «Дом качества»	Основной инструмент QFD, представляющий собой матрицу, связывающую требования клиентов с техническими характеристиками продукта	Позволяет наглядно представить взаимосвязь между требованиями и характеристиками, выявлять ключевые факторы успеха и определять приоритеты разработки	Сложность построения для сложных продуктов, необходимость привлечения значительных ресурсов для сбора и обработки данных
Анализ продукции конкурентов	Инструмент, позволяющий сравнивать продукцию компании с продукцией конкурентов по ключевым характеристикам	Помогает выявить сильные и слабые стороны своей продукции, определить области для улучшения	Требует значительного объема информации о конкурентах, что достаточно труднодоступно
Методика FMEA (Failure Mode and Effect Analysis)	Метод анализа потенциальных отказов и их последствий, используемый для выявления и устранения возможных проблем до их возникновения	Предупреждает возникновение дефектов, снижает риски и затраты на исправление ошибок	Требует глубокого понимания процессов и параметров продукции, трудоемок в реализации

Составлено автором.

Поскольку электротехническая продукция характеризуется высокой сложностью и строгими требованиями к качеству и безопасности, применение QFD в данной отрасли особенно важно для обеспечения соответствия продукции ожиданиям потребителей и нормативным требованиям.

Применение представленных выше инструментов развертывания функции качества в сочетании с процессным подходом к управлению позволяет предприятиям рынка электротехнической продукции, снижать производственные издержки и улучшать качество продукции.

Список использованных источников

- 1. Акылбек Уулу, А. Процессный подход в модернизации системы менеджмента качества и управлении бизнес-процессами на электроэнергетических предприятиях России / А. Акылбек Уулу // Ученые записки Российской Академии предпринимательства. 2023. Т. 22, № 3. С. 39—47.
- 2. Булин, А. А. Использование искусственного интеллекта для повышения эффективности бизнес-процессов на предприятиях электронной промышленности (на примере контроля качества продукции) / А. А. Булин, И. В. Шацкая, В. В. Бурлаков // Финансовый менеджмент. 2024. № 2. С. 215–222.
- 3. Хохолуш, М. С. Стратегия внедрения социальных инноваций / М. С. Хохолуш // Актуальные вопросы современной экономики. 2024. № 8. С. 293–296.
- 4. Самышева, Е. Ю. Экономические аспекты использования электронных систем управления в промышленности / Е. Ю. Самышева, А. Н. Хуснутдинов, С. В. Шильников // Экономика и управление: проблемы, решения. 2024. Т. 4. № 4(145). С. 12—17.
- 5. Рахманов, М. Л. Проблемы эффективного функционирования системы качества / М. Л. Рахманов, Е. П. Бульба // Компетентность. 2023. № 4. С. 5–9.
- 6. Ростовцев, К. В. Оценка потенциала развития экосистемной модели отраслей российской экономики / К. В. Ростовцев, М. С. Хохолуш, И. В. Тарасюк // Научные труды Вольного экономического общества России. 2024. Т. 247. —№ 3. С. 311—328.

УДК 330.341.1

ТЕХНОПАРКИ В РАЗВИВАЮЩИХСЯ СТРАНАХ: ВЫЗОВЫ И ПЕРСПЕКТИВЫ

Манн М. Л., ст. менеджер

АО «Шадринский зооветснаб», г. Шадринск, Российская Федерация

<u>Реферат</u>. В статье рассмотрены особенности организации инновационной деятельности в рамках технопарковых структур развивающихся стран. Выделены особенности касающиеся роли технопарков в технологическом развитии стран.

Ключевые слова: технопарк, развитие, международный обмен, инновации.

Технопарковые образования представляют собой специализированные структуры, объединяющие научные, образовательные и производственные компоненты для стимулирования инновационного процесса. Их создание направлено на развитие высоких технологий, поддержку стартапов и коммерциализацию научных идей. Технопарки стали важным элементом современной экономики, способствуя интеграции науки и бизнеса.

В условиях стремительного технологического прогресса и глобальных экономических изменений технопарки становятся ключевыми игроками в инновационной деятельности. Они предоставляют платформы для научных исследований, развития технологий и их внедрения в производство. Это делает тему исследования технопарков актуальной, так как их роль в экономическом развитии и поддержке инновационных инициатив продолжает расти [1]. Сущность технопарка заключается в координации взаимодействий между институтами формирования новых знаний: исследовательскими институтами, научнообразовательными центрами и теми, кто их реализует: производителями товаров и услуг.

УО «ВГТУ», 2025