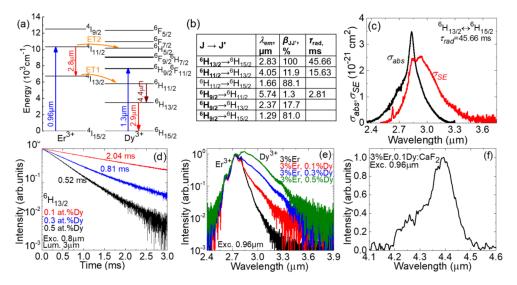
Mid-infrared emissions of Dy³⁺ ions in CaF₂

Ngoc Quynh Hoa Nguyen^{1,*}, Pavel Loiko¹, Abdelmjid Benayad¹, Aleksei Kornienko², Elena Dunina², Liudmila Fomicheva³, Patrice Camy¹ and Alain Braud¹

¹Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard Maréchal Juin, 14050 Caen, France ²Vitebsk State Technological University, 72 Moskovskaya Ave., 210035 Vitebsk, Belarus ³Belarusian State University of Informatics and Radioelectronics, 6 Brovka St., 220027 Minsk, Belarus

Abstract. We report on a comprehensive spectroscopic study of singly Dy³+ doped and Er³+,Dy³+ codoped calcium fluoride (CaF₂) crystals for midinfrared laser applications. The *f-f* transition probabilities of Dy³+ were determined by the Judd-Ofelt theory. The stimulated-emission cross-section reaches 0.25×10^{-20} cm² at 2.93 µm corresponding to an emission bandwidth of 350 nm. The Er³+ \rightarrow Dy³+ energy transfer efficiency in codoped crystals is quantified. The 4.4-µm Dy³+ emission is observed for the first time from fluoride crystals.


1 Introduction

Dysprosium ion (Dy^{3+}) is among the most promising candidates for the generation of midinfrared (MIR) laser emission at 3 μ m and 4.4 μ m. Cubic calcium fluoride crystals (CaF₂) attract attention for rare-earth (RE) doping as they combine good thermal properties, low phonon energy behavior which is essential for reducing the rate of non-radiative transitions unlocking MIR emission, and a strong inhomogeneous spectral line broadening originating from rare-earth ion clustering [1]. The latter property is a prerequisite for broad wavelength tuning and ultrashort pulse generation. In the present work, we systematically study the spectroscopic properties of Dy^{3+} ions in CaF_2 crystals for MIR laser applications.

2 Results and discussion

Singly Dy³⁺-doped and Dy³⁺,Er³⁺-codoped CaF₂ crystals were grown by the Bridgman–Stockbarger method. The f-f transition probabilities of Er³⁺ were calculated in the framework of the modified Judd-Ofelt theory, see Fig. 1(b). The radiative lifetimes τ_{rad} for the ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ manifolds amount to 45.66 ms and 15.63 ms, respectively, and the luminescence branching ratio $\beta_{JJ'}$ for the ${}^{6}H_{11/2} \rightarrow {}^{6}H_{13/2}$ transition reaches 11.9%. The absorption, σ_{abs} , and stimulated-emission, σ_{SE} , cross-sections of Dy³⁺ ions in the spectral range around 3 µm (the ${}^{6}H_{15/2} \rightarrow {}^{6}H_{13/2}$ transition) are depicted in Fig. 1(c). The peak σ_{SE} value calculated using the Füchtbauer-Ladenburg equation reaches 0.25×10^{-20} cm² at 2933 nm. The emission spectrum is smooth and very broad (emission bandwidth (FWHM): ~350 nm). This behavior is due to the rare-earth ion clustering in fluorite-type CaF₂-REF₃ solid solutions. Notably, the emission extends far beyond 3 µm avoiding the structured water vapor absorption in air. The

luminescence lifetime of the ${}^{6}H_{13/2}$ Dy ${}^{3^{+}}$ state was measured as a function of Dy doping level, decreasing from 2.04 ms (0.1 at.% Dy) to 0.52 ms (0.5 at.% Dy), as shown in Figure 1(d). The main difficulty in exciting MIR Dy ${}^{3^{+}}$ emission consists of its weak absorption and nonconventional pump wavelengths. This problem can be resolved by Er ${}^{3^{+}}$ codoping: the donor Er ${}^{3^{+}}$ ions can be efficiently pumped at 0.96 μ m by InGaAs diode lasers, and there exist two non-radiative energy-transfer (ET) processes, ${}^{4}I_{11/2}(Er^{3^{+}}) \rightarrow {}^{6}H_{5/2}(Dy^{3^{+}})$ and ${}^{4}I_{13/2}(Er^{3^{+}}) \rightarrow {}^{6}H_{11/2}(Dy^{3^{+}})$, enabling acceptor Dy ${}^{3^{+}}$ emission around 3 μ m and 4.4 μ m. Figure 1(e) depicts the broadband emission of codoped crystals around 3 μ m, indicating enhanced Dy ${}^{3^{+}}$ emission on increasing the Dy/Er codoping ratio. The ET2 efficiency was estimated by monitoring the ${}^{4}I_{11/2}$ Er ${}^{3^{+}}$ luminescence lifetime with and without Dy ${}^{3^{+}}$: $\eta_{ET} = \tau_{lum(D+A)}/\tau_{lumD}$, reaching 91.4% for the 3 at.% Er, 0.5 at.% Dy codoped crystal. Remarkably, Dy ${}^{3^{+}}$ luminescence at 4.4 μ m (${}^{6}H_{11/2} \rightarrow {}^{6}H_{13/2}$), Fig. 1(f), was detected for the first time from any fluorite-type crystal.

Fig. 1. Spectroscopy of Dy³⁺ ions in CaF₂ crystals: (a) energy-level scheme of Dy³⁺ and Er³⁺ ions showing pump and laser transitions, ET – energy-transfer; (b) probabilities of spontaneous radiative transitions for Dy³⁺ ions calculated using the Judd-Ofelt theory; (c) absorption, σ_{abs} , and stimulated-emission (SE), σ_{SE} , cross-sections for the $^6H_{13/2} \leftrightarrow ^6H_{15/2}$ transition; (d) luminescence decay curves from the $^6H_{13/2}$ Dy³⁺ manifold; (e,f) mid-infrared emission spectra of Er³⁺,Dy³⁺:CaF₂ crystals: (e) emission at ~3 μm; (f) emission at ~4.4 μm.

3 Conclusion

To conclude, Er³⁺,Dy³⁺ codoping represents a viable route for efficient excitation of MIR Dy³⁺ luminescence in CaF₂ crystals around 3 μm and 4.4 μm. Further work will focus on isostructural fluorite-type compounds, such as SrF₂ and BaF₂, possessing even low phonon energies, as well as alternative codoping schemes (Tm³⁺-Dy³⁺). *Funding*. French Agence Nationale de la Recherche (ANR-22-CE08-0031, FLAMIR); Région Normandie, France (Contrat de plan État-Région (CPER)).

References

1. S. Normani, P. Loiko, L. Basyrova, A. Benayad, A. Braud, E. Dunina, L. Fomicheva, A. Kornienko, A. Hideur, and P. Camy, Opt. Mater. Express **13**(7), 1836-1851 (2023).