МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ БССР Витебский технологический институт легкой промышленности Кафедра "Технология конструкционных материалов"

УДК 621.762 № гос.регистрации 01.85.0025943 Инв. №

0287.0 045758

ОТЧЕТ

о научно-исследовательской работе "УСОВЕРШЕНСТВОВАТЬ ТЕХНОЛОГИЮ ФОРМОВАНИЯ ДЛИННОМЕРНЫХ ПОРИСТЫХ МАТЕРИАЛОВ И ИЗГОТОВИТЬ ОПЫТНО-ПРОМЫШЛЕННУЮ УСТАНОВКУ И РАЗРАБО-ТАТЬ ТЕХНОЛОГИЮ ФОРМОВАНИЯ ПОРОШКОВОЙ ПРОВОЛОКИ"

XД - 85-I87 Книга 3)(отчет заключительный)

Библиотека ВГТУ

Витебск 1986

СОДЕРЖАНИЕ

ІІ. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ НА ПОДБОРКУ
СВЯЗУЮЩЕГО ДЛЯ ФОРМОВАНИЯ ПРОВОЛОКИ ИЗ
порошка оксида кремния
II.I. Применение крахмального клейстера
II.2. Применение смазки
II.3. Применение полимерных связующих
12. РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ДЛИННОМЕРНЫХ
ТРУБЧАТЫХ ЭЛЕМЕНТОВ ТЕПЛООБМЕННИКОВ
із. экспериментальное исследование процесса экструзии
длинномерных изделий из порошка нержавеющей стали192
ІЗ.І. Установка для непрерывной экструзии длинномерных
изделий
13.2. Устройство для исследования силовых параметров
процесса экструзии
14. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СИЛОВЫХ ПАРАМЕТРОВ
ПРИ ЭКСТРУЗИИ ШНЕКОМ ТРУБЧАТЫХ ИЗДЕЛИЙ
14.1. Влияние гомогенности смеси на силовые параметры
процесса экструзии
14.2. Влияние длины калибрующей части матрицы и расстояния
матрицы относительно торца шнека200
I4.3. Влияние степени обжатия
I4,4. Влияние водержания пластификатора202
14.5. Влияние реологических характеристик
15. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПОЛУЧЕНИЯ ДВУХСЛОЙНЫХ
длинномерных изделий
15.1. Обзор схем непрерывного формования многослойных
изделий
15.2. Исследование возможности получения двухслойных
длинномерных изделий
I5.3. Технологический процесс формования двухолойных
длинномерных изделий
16. КОРРЕКТИРОВКА ТЕХНОЛОГИИ ПОРОШКОВОЙ ПРОВОЛОКИ
ЗАКЛЮЧЕНИЕ
JUTEPATYPA

II. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПО ПОДБОРУ СВЯЗУЮЩЕГО ДЛЯ ФОРМОВАНИЯ ПРОВОЛОКИ ИЗПОРОЛКА ОКСИДА АЛЮМИНИЯ

Формование проводски из порошка скоида адюминия ссуществлялось на шнековом экструдере.

Для обеспечения необходимой формуемости и пластичности порошковой массы требуется подходящая связка (пластификатор).

Вопрос выбора пластификатора рассматривался не только с точки зрения вдияния его на процесс пресования, но и вдияния его на процесс последующего нанесения покрытия, так как пластификатор может способствовать или препятствовать процессу образования покрытия и, следовательно, изменять свойства готового изделия.

С этой целью проводились исследования по подбору пластификатора для формования проводоки из порошка скоида алюминия.

В качестве связующих были исследованы следующие вещества: крахмал;

подивиниловый спирт;

полиуретан (десмоккол);

АБС (сополимер стирола с акрилонитрилом и бутадиеновым каучуком).

Пластичность порошковой смеси обеспечивается количеством пластификатора (связки), способом его введения и влажностью смесей. Связующие вещества для приготовления порошковой смеси использовались в виде клейстера или раствора.

При перемещивании пластификатора с порешком твердне частицы порешка сказываются погруженными в массу пластификатора, что придает смеси пластичность. Увеличение пластификатора приводит к увеличению пластичности смеси. Нередко пластификатор составляет до 50 % объема смеси. Однако, чрезмерное увеличение пластификатора в смеси может привести к ухудшению свойств полученных изделий.

На пластичность порошковых смесей большое влияние оказывает влажность смесей. Оптимальное количество влаги для различных смесей колеблется в пределах от IO до I6%. Ниже этого предела смеси становятся непластичными, а выше — текучими при малых давлениях. Это приводит к тому, что при достаточно большом содержании пластификатора относительно сухие смеси могут

- I. ХАРЛАМОВ Ю. А. Классификация и критерии оценки качества процессов получения покрытий из порошковых материалов. Порошковая металлургия, 1984. №4. 81—83 с.
- 2. ДОРОЖКИН Н.Н., АБРАМОВИЧ Т.М., ЖОРНИК В.И. Получение пскрытий методом припекания. Мн., Наука и техника, 1980. 151-166 с.
- 3. А.С. № 485827 (СССР) Способ изготовления спеченных многослойных изделий. / ИЗОТОВ В.М., ЗЕЛЬЦЕР Л.Г., МИ— ХАМЛОВ В.Г. и др. Опубл. в Б.И., 1975. № 26
- 4. А.С. № 730472 (СССР) Способ изготовления биметаллической сталеалюминиевой проволоки / ВИНОГРАДОВ Г.А. и др. — Опубл. в Б.И., 1980. №16.
- 5. А.с. № 916094 (СССР) Способ изготовления спеченных составных изделий из разнородных материалов / КЕМУРДЖИАН А.Л. и др. - Опубл. в Б.И., 1982, №12.
- 6. Патент № 4189522 (США), B22 F 5/00, публ., 1980.
- 7. Заявка № 56-21041 (Япония), В22 Г 7/04, публ., 1981
- 8. А.с. № 9352I4 (СССР) Способ изготовления многослойных изделий и устройство для его осуществления / КЛИМЕНКОВ С.С., ЛЫСОВ Д.С., БОРТНИК П.И., ПРОКОПОВ И.П. Опубл. в Б.И., 1982. №22.
- 9. А.с. № 952436 (СССР) Способ изготовления биметаллической ленты / КАТРУС О.А., ОЧЕРЕТЯНСКИЙ В.М. — ОПУбл. в Б.И., 1982. №31.
- IO. А.с. № 952437 (СССР) Устройство для мундштучного прессования двухолойных изделий / ТЮРЕЛЕВ В.И., АСТАХОВА Е.В., ДЕМИДКО М., МАСКАЛЕВ А.С. Опубл. в Б.И., 1982. №31.
- II. А.с. № 988456 (СССР) Способ получения биметаллических заготовок / ЧЕРНОКРЫЛОВ В.А., ЧЕЧИН В.И., ДМИТРИЕВ В.М., КАЛЯКИНА Е.Г. Опубл. в Б.И., 1983. №2.
- 12. А.с. № 1026958 (СССР) Способ прессования многослой-

- положением слоев / ЛЮБИМОВ В.И., КОВАЛЕВИЧ Ю.А., ВАРА-ВИН В.А., ЗАЯШ О.В. спубл. в Б.И., 1983. №25.
- I3. А.с. № II33033 (СССР) Устройство для получения многослойного плакированного проката из металлического порошка / ГОРБУНОВ Ю., КИШМЕРЕШКИН М.И. — Опубл. в Б.И., I985. №I.
- I4. А.с. № 852446 (СССР) Устройство для прессования двухолойных труб из порошка / СКОКОВ П.И., КЛИМЕНКОВ С.С., ДРОБАШЕВСКИЙ Г.С., ОГРИЗКО В.Г. Опубл. в Б.И., I98I. №29.
- I5. А.с. № IO47593 (СССР) Устройство для прессования двухслейных изделий из порошка / КЛИМЕНКОВ С.С., мемумным м.м. Опубл. в Б.м., I983. №38.
- I6. Патент № 4224085 (США) В22 F 3/24, опубл. 1980.
- I7. А.с. № 755434 (СССР) Способ изготовления всльфрамовой проволоки / АМОСОВ Б.А., КАРЕЛИН Б.А., КИСИЛЕНКО Н.И., КОРНЕЕВА Э.В., ПАРУСНИКОВ В.Н. — Опубл. в Б.И., 1977. №22.
- 18. Патент № 4104445 (СПА) В22 F 3/00, опубл. 1978.
- 19. Заявка № 2420347 (ФРГ) В22Д II/06, спубл. 1977.
- 20. А.с. № 738770 (СССР) Технологическая линия для производства биметаллической проволоки / ВИНОГРАДОВ Г.А., ЗАБАШТА И.В., КАПУЦКИИ Г.Я. и др. Опубл. в Б.И., 1980. №21.
- 2I. Патент № 4224267 (СПА) B22 F I/OO, спубл. 1980.
- 22. Патент № 4235007 (СПА) В22 F 13/24, спубл. 1980.
- 23. Патент № 4030919 (США) В22 F 3/20, спубл. 1979.
- 24. Заявка № 2903510 (ФРГ) В22 F 3/20, спубл. 1980.
- 25. Заявка № 58 46 522 (Япония) В22 F 3/02, спубл. 1983.
- 26. Powder Metallurgy 1 1, 1979. 23 c.
- 27. Заявка № 57 8163 (Япония) В22 F 3/18, спубл.1977.
- 28. ДЖОНС В.Д. Основы перошковой металлургии. Изд-во миР. м., 1965. 2 ч.
- 29. ФЕДОРЧЕНКО И.М. Исследования в сбласти активирован-

- ного спекания. Порошковая металлургия, 1962. 162.
- 30. ПОЛОВ А.С. Применение смазск при обработке металлов давлением. М., 1974.
- ЗІ. КИСЛЫЙ П.С., САМОСНОВ Г.В. Основы процесса мундштучного прессования труб и стержней из порошков тугоплавких ссединений. Порошковая металлургия, 1962. №3.
- 32. Патент (Великобритания) № 706476.
- 33. Dawil W. A. Hand BOOK of Hard Metals, London, 1955.
- 34. РАДОМЫСЛЕНСКИЙ И.Д., БАРЦЕВСКАЯ Л.Ф. Металлокерамические фильтры для фильтрации вискозы. Технология машиностроения, в.6. 1963.
- 35. КЛЯКО Л.И., КУДРЯ Н.А., РОМАНОВА Н.И., ЗОТОВА Г.М. Исследование и экспериментальная проверка нового пластификатора для производства твердых сплавов. Твердые сплавы и тугоплавкие металлы. ВНИИТС. Науч. тр. 17 т. Москва, "Металлургия", 1977.
- 36. САМСОНОВ Г.В., ВИТРЯНЮК В.К., СЫСОЕВ П.Д. Получение высокопористых материалсв из карбида титана и цирксния. Порошковая металлургия, 1968. №4.
- 37. ВИТЯЗЬ П.А. Эффективные направления использования спеченных пористых материалов. Ин., 1980. Серия Машино-строения и металлообработка.
- 38. живноватый А.И., ШЕНБЕРГ Г.Ф. Исследования по технологии изготовления пористых титановых труб. Порошковая металлургия, 1965/ №2.
- 39. **Ж**НДРИЕВСКИЙ Р.А., ПУГИН В.С., ФЕДОРЧЕНКО И.М., ТЕВЕРОВСКИИ Б.З. Пористие металлокерамические материали из нержавеющей стали. Порошковая металлургия, 1965. МІ.
- 40. дюбель В., ВАРКЕНТИН Х. Современные способы изготовления фасонных металлокерамических деталей увеличенных размеров. Сбор. докл. конф. научн. об-ва АН ГДР в Берлине. Изд-во Металлургия.
- 41. Горячее пресссвание ферритов. Изд-во "Металлургия". м. 1971.
- 42. А.с. № 627918 (СССР) Пластификатор для пресссвания

- порошков / ПШЕНИЧНОВА Л.Я., РАДЧЕНКО М.П., МУСЛАКОВ В.П.-Опубл. в Б.И., 1978. №38.
- 43. РАБИНОВИЧ Ф.М. Кондуктометрический метод дисперсного анализа. Издательство "Химия". Ленинградское отделение. 1970.
- 44. КОУЗОВ П.А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов, М., 1970.
- 45. P.J.M. Chare and T. Sheppard. Powder Extrusion as a Primary Fabricating Process for AL-Fe Alloys. Powder Metallurgy, 1973, V 16, NO32, p. 437 46. P.J.M. Chare and T. Sheppard. Den sification and properties of extruded Al-Zu-Ma Atomized.

properties of extruded Al-tu-Ma Atomized Powder - Ont. J. Powder Metallurgy and Powder Technology, 1974, V. 10, No 3, p. 203

- Technology, 1974, V. 10, No 3, p. 203
 47. T. Sheppard and Creasley Densification and pressure requirements during extrusion of atomized aluminium powder. Powder Meta llurgy, 1972, V 15, No 29, p. 17
- 48. ТОВАРОВ В.В. Цемент 1947. МЗ.
- 49. ТОВАРОВ В.В. Заводская лаборатория, 1948. МІ.
- 50. ТОВАРОВ В.В. Заводская лаборатория, 1953. №5.
- 51. ДЕРЯТИН Б.В. ДАН СССР, 1946. №7, 53, 627.
- 52. ДЕРЯГИН Б.В., ЗАХАВАЕВА Н.Н., ТАЛАЕВ М.В. Прибор для определения удельной поверхности порошковых и дисперсных тел по сспротивлению течению разреженного воздуха. Изд. АН СССР, 1953.
- 53. ДЕРЯГИН Б.В., ЗАХАВАЕВА Н.Н., ЗУСМАН Е.Е., ТАЛАЕВ М.В. ФИЛИПОВСКИЙ В.В. ЖФК, 29, Вып. 5. 860. 1955.
- 54. ДЕРЯГИН Б.В., ЗАХАВАЕВА Н.Н., ТАЛАЕВ М.В?, ФИЛИПОВС-КИЙ В.В. Сб. новые методы физикс-химических исследований. Изд. АН СССР. 1956.
- 55. ДЕРЯГИН Б.В., ЗАХАВАЕВА Н.Н., ТАЛАЕВ М.В., ФИЛИПОВС-КИЙ В.В. Определение удельной поверхности порошкосоразных тел по сопротивлению фильтрации разреженного

- всздуха. Изд. АН СССР, 1957.
- 56. ДЕРЯГИН Б.В., ЗАХАВАЕВА Н.Н., ТАЛАЕВ М.В., МАКАРОВА Е.В. Металлический прибор для определения удельной поверхности порошковых пористых тел. Изд. АН СССР. 1959.
- 57. T. Sheppard and P.J.M. Chare. The extrusion of a tomized aluminium powder. -Powder Metallurgy, 1972, V 15, No 29, p. 17
- 38. Davidson J.K., Miller R.S. Recycle of ceramic and cermet fuels using wed binder extrusion. In Fabrication element combustible tipo ce-romicreattori potento", Roma, 1967, p. 241-258.
- 59. СТЕПАНЕНКО А.В., ИСАЕВИЧ Л.А. Непрерывное формование металлических порошков и гранул. Минск "Наука и техника" 1980.
- 6U. A.c. 16 508342 (CCCP).
- 61. ТРИГОРЬЕВ А.К., ГРОХОЛЬСКИЙ Б.П. Порошковая металлургия и применение композиционных материалов. Л., Лениздат", 1982.
- 62. ЗЛОБИН Г.П. Формование изделий из порошков твердых сплавов. М., Металлургия, 1980. 49 с.
- 63. жданович Г.м. Теория прессования металлических порсшков. М., "Металлургия", 1969. 264 с.
- 64. А.с. № 103347 (СССР) Устройство для исследования внешнего и межчастичного трений порошка. / КЛИМЕНКОВ С.С., ПЯТОВ В.В., ШУЛЬКОВ К.В.
- 65. МИХАИЛОВ Н.В., РЕБИНДЕР П.А. О структурно-механических свойствах дисперсных и высокомолекулярных систем. Колл. ж., 17, №2, 107. 1955.
- 66. НИЧИПОРЕНКО С.П. Основные вопросы теории процессов сбработки и формования керамических масс. Издательство АН УССР. Киев, 1960.
- 67. ЯМПОЛЬСКИЙ Б.Я., РЕБИНДЕР П.А. Исследование струк-

- турнс-механических свойств металлических дисперсных систем методом конического пластомера. Колл.ж., 10, 16, 466, 1948.
- 68. РЕБИНДЕР П.А., СТЕПАНЕНКО Н.А. О методе погружения конуса для характеристики структурно-механических свойств пластично-вязких тел. ДАН СССР, 64, №6. 835. 1949.
- 69. НИЧИПОРЕНКО С.П., ШАБАШКЕВИН Л.Б. Применение методов исследования структурно-механических свойств дисперсных систем к анализу процессов обработки пластичных керамических масс. "Стекло и керамика" №4, I4. I952.
- 70. КИСЛЫЛ П.С., САМСОНОВ Г.В. Основы процесса мундштучного прессования трубы стержней из порошков тугоплавких ссединений. Порошковая металлургия, 1962. 18 3, 35-40 с.
- 71. РЕБИНДЕР II.А. Новые методы характеристики упругопластично-вязких свойств структуированных дисперсных систем и растворов высокополимеров. Сб. "Новые методы физико-химических исследований поверхностных явлений". Труды института физ.химии АН СССР, в. I., 5 с. 1950.
- 72. АБДУРАГИМОВА А.А., РЕБИНДЕР П.А., СЕРБ-СЕРБИНА Н.Н. Упругс-вязкостные свойства тиксотропных структур в всд-ных суспензиях бентонитовых глин. Колл. ж., I7, №3 I84c. 1955.
- 73. ЛИТВИНОВА Р.Е. Структурно-механические свойства глинистых суспензий. Изв. ВНИИ гидротехники, 47, 236. 1952.
- 74. ТОЛСТОЙ Д.М. Об эффекте пристенного сконжения дисперсных систем. 2. Методика изучения эффекта и предварительные экспериментальные результаты. Колл.ж., 10, 12, 133 с. 1948.
- 75. КОСТОРНОВ А.Г., РАЛЧЕНКО А.И. Реслогические исследования пластифицированной порошковой шихты. Порошковая металлургия, 1966. №5 7 с.
- 76. ВОЛАРОВИЧ М.П. Новые вискозиметры для нефтепродуктов. Сб. Вязкость жидкостей и коллоидных растворов. Изд-во АН СССР. 1944. 2 т. 191 с.

- 77. РАИЧЕНКО А.И., КОСТОРНОВ А.Г. Реслогические исследсвания пластифицированной порошковой шихты. Порошковая металлургия, 1966. № 9 с.
- 78. БЕЛОВ С.В. Пористые металлы в машиностроении. Машиностроение. М., 1981. 36 с.
- 79. БЕРХМАН Л.С., МЕЛЬНИКОВА И.Т. Пористая проницаемая керамика. Л., Стройиздат., 1969. 141 с.
- 80. ШАТП В. Спеченные композиционные материалы. Порош-ковая металлургия. М., "Металлургия", 1983. 157 с.
- 81. РУДЕНКО В.Н., ГОРОДЕЦКИЙ С.С. Методика исследования прочности металлокерамических колец. Порошковая металлургия, 1963. №5.
- 82. Положительное решение по заявке № 3864876/22-02 B22 F 3/20.
- 83. Положительное решение по заявке № 3821938/22-02 В22 F 3/20.
- 84. Дж ОНСОН. Основы порошковой металлургии. Мир. м., 1965.
- 85. САМСОНОВ Г.В., ВИТРЯНЮК В.К., СЫСОВ П.Д. Получение высскопсристых материалов из карбида титана и циркония. Порошковая металлургия, 1968. №4.
- 86. ПАВЛОВСКАЯ Е И., ГОРЯЧЕВА З.В. Нексторые вопросы изготовления пористых изделий из вольфрама. Порошковая металлургия, 1968. №4.
- 87. КОРНИЕНКО П.А., ПУГИН В.С. Исследование структурномеханических свойств пластификаторов. Порошковая металлургия, 1967. №6.
- 88. ВИТРЯНЮК В.К., ОРДЕНКО В.Б. Получение пористых изделий из карбида Со с применением летучих наполнителей. Порошковая металлургия, 1967. 14.