МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Витебский государственный технологический университет

УДК 628.16.081:621.215.1 № госрегистрации 1995794 Инв.№

ТВЕРЖДАЮ
Постоктор по научной работе
С.М.Литовский
1997г.

OTHET

о научно-исследовательской работе 95-/6483

"Исследование общих и физико-химических закономерностей и разработка экологически чистых технологий получения восстановителей и сорбентов из отходов доломитового производства"

(Заключительный)

Начальник НИСа

the state of the s

С.А.Беликов

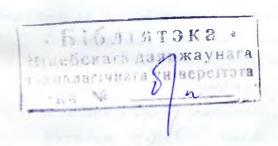
Научный руководитель темы, зав.кафедрой,д.т.н., проф.

Ty

C.E.Kosyvo

Витебск 1997

PEGEPAT


Отчет 111 сто.. пл.14. табл.21. источников 66.

Иелью работы является выявление возможных путей утилизации твердых промышленных отходов на примере гидролизного лигнина и доломитового производства.

Разработаны с выявлением оптимальных параметров технологии пиролиза гидролизного лигнина и использования всех основных продуктов данного процесса. а именно лигнинного угля, смолы и паро-газовой фазы.

Изучены физико-химические свойства лигнинного угля, найдены пути снижения его удельного электрического сопротивления; методом газо-жидкостной хроматографии определены основные вещества, входящие в состав смолы и надсмольной воды.

Найдено, что лигнинный уголь может использоваться как исходный компонент для получения адсорбентов, для восстановления металлов из их отходов, для получения карбидов металлов, а при добавлении к нему получаемой при пиролизе лигнина смолы — угольных электродов.

СПИСОК ИСПОЛНИТЕЛЕЙ

Ковчур С.Г. — научный руководитель темы. д.т.н.. профессор. зав.кафедрой охраны труда и промэкологии:

Двоегласов Г.В. — ответственный исполнитель, к.т.н.. доцент кафедры охраны труда и промэкологии:

Ольшанский А.И. — ст.научный сотрудник. к.т.н., доцент кафедры охраны труда и промэкологии;

Ордовский Р.В. — научный сотрудник, ст.преподаватель кашедры охраны труда и промэкологии:

Бордзиловский В.Я. — ст.научный сотрудник, к.х.н., доцент кафедры химии:

Правдивый И.Е. — научный сотрудник, ст.преподаватель кафедры охраны труда и промэкологии:

Реут Т.А. — научный сотрудник. ст.преподаватель; Скворцов В.А. — ст.научный сотрудник, к.т.н., доцент

Савицкий А.С. — ст.научный сотрудник, к.т.н., доцент кафедры экономики, организации и планирования предприятий;

кафедры экономики, организации и планирования предприятий;

Ткаченок П.А. — мл.научный сотрудник, ст.преподаватель кафедры экономики, организации и планирования предприятий:

Аристов Г.Н. — ст.научный сотрудник, к.фарм.н., доцент кафедры технологии лекарственных форм ВМИ;

Букин W.A. — инженер, зав.лабораторией кафедры автоматизации технологических процессов и производств:

Степаненко В.И. — лаборант, машинистка машинного бюро:

Шарандо А.В. — лаборант, студент гр.Эт—54 ЭТФ ВГТУ; Хникина С.Ю. — лаборант, студентка ЭТФ ВГТУ;

Букштын Н.И. — лаборант, слесарь-инструментальщик вавода "Эвистор".

I. АНАЛИЗ ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ ПО УТИЛИЗАЦИИ УТЛЕРОДСОДЕРЖАЦИХ ПРОМЫШЛЕННЫХ ОТХОДОВ

По состоянию на OI.OI.9Iг. в Республике Беларусь было уничтожено в различных отраслях промышленности древесных пней, корней,
коры, опилок древесины, отходов лесопиления и деревообработки более
3030 тыс.м³, а также лигнина, шрота и других отходов деревообработки — более I2794 тонн [I]. В то же время при производстве доломитовой муки образуются десятки тысяч тонн отходов доломита. Все эти
отходы представляют собой ценное сырье для хозяйства страны и в
связи с этим впервую очередь дадим характеристику исходных веществ,
технологию их переработки, области использования продуктов переработки, кинетические закономерности процессов и другие вопроси
переработки на основе анализа литературных и патентных источников.

І.І. Характеристика исходного растительного сырыя

Растительное сырье, к которому относятся различные отходы деревопереработки /опилки, щепа/ и сельскохозяйственных растений /кукурузная кочерыжка, хлопковая шелуха и др./ широко используется для химической переработки во многих отраслях промышленности. Основными компонентами растительного сырья являются целлюлоза, гемицелымлоза и лигнин. Кроме этих компонентов в нем присутствуют также смолистые, дубильные, зольные и другие вещества.

Гемицеллюлозы /полиозы/ тесно связани с целлюлозой в клеточной стенке. Основными составными звеньями полиоз являются пять
нейтральных сахаров: гексозы /глюкоза, манноза, галактоза/. Молекулярные цепи полиоз намного короче цепей целлюлозы, они часто
разветвлены, в них входят заместители. Древесина лиственных пород
содержит больше полиоз, чем древесина хвойных и состав полиоз у нее
различен. Полиозы входят в состав всех растений /трав, злаков, мхов,
водорослей и т.д./ [5].

Гемицеллюлозы и целлюлоза относятся к классу полисахаридов, но они резко отличаются друг от друга по химическому составу, молекулярному и надмолекулярному строению. Гемицеллюлозы хорошо растворяются в разбавленной щелочи, а также легко гидролизуются при кипячении в присутствии разбавленных минеральных кислот, а целлюлоза в значительной степени устойчива к действию щелочей и подвергается гидролизу разбавленными кислотами только при високих температурах. В состав гемицеллюлоз входят такие группы сложных полисахаридов, как арабиноксиланы, 4-0-метилглюкуроноварабиноксиланы, глюкоманнаны, галактоглюкоманнаны и арабиногалак-

JUTEPATYPA

- 1. Справочник неиспользуемых отходов производства. /Составители: В.В.Гомбалевский. А.М.Ботвиньева.-Ми.: НПК "Знание". 1992.
- 2. Шарков В.Н., Куйбина Н.И. Химия гемицеллюлов.-М.: Лесная промышленность, 1972.-440с.
- 3. Дудкин М.С. Успехи химии ксиланов. /Химия доевесины.-1980.-№4.-с.3-18.
- . 4. Роговин З.А. Химия целлюлосы. М.: Химия. 1972.— 518c.
- 5. Фенгель Д., Вегенер Г. Древесина.— М.: Лесная промышленность. 1988.
- 6. Браунс Ф. Лигнины.— М.: Лесная промышленность. 1972.—632с.
- 7. Никитин В.М.., Оболенская А.В., Щеголев В.П. Химия древесины и целлюлозы.— М.: Лесная промышленность.— 1978.—367с.
- 8. Корольков И.И. Перколяционный гидролиз растительного сырья. Изд. 3-е.- М.: Лесная промышленность, 1990.-270с.
 - 9. Леванова В.П. Лечебный лигнин. С-Пб., 1992. 136с.
- 10. Уайс Л.Э., Джан Э.С. Химия древесины.. т.1.— М.: Гослесбумиздат, 1959.—608с.
- 11. Сухановский С.И., Вайнштейн Н.Р. Смолистые вещества гидоолизных лигнинов и их происхождение./ Сб.трудов ВНИИГС, 1966.-т.15.-с.268-275.
- 12. Тимофеева В.И., Сухановский С.И. Состав и свойства экстрактивных веществ, содержащихся в целлолигнине березы и одубины./ Сб.трудов ВНИИ Гидролиз, 1948.— т.17.— с. 226—237.
- 13. Чудаков М.И. Промышленное использование лигнина. Ивд. 3-е/ Лесная промышленность, 1983.-200с.
- 14. Зыков Д.Д. и др. Общая техническая технология органических веществ. Изд. 2-е.- М.: Химия, 1966.-608с.
- 15. Скриган А.И. Процессы превращения древесины и ее химическая переработка.— Мн.: Наука и техника, 1991.
- 16. Краткий справочник химика./ Сост. В.И.Перельман.— М.: Госхимиздат, 1954.—560с.

- 17. Некрасов Б.В. Основы общей химии. Т.1.— М.: Химия. 1965.—519с.
- 18. Некрасов Б.В. Основы общей химии. Т.2.- М.: Химия. 1967.-400с.
- 19. Пархоменко В.Е. Технология переработки нефти и газа.— М.: Гостоптехиздат. 1959.
- 20. Слособ получения активного угля. Авт.свид. **400165.C 01 B 31/08: 01 J 19/04. Андоеев Ю.В. и до. Бюллетень **27. 1983.
 - 21. Патент ФРГ №2033190. кл.C OlB 31/08, 1975.
 - 22. Патент США №3840476. кл.252-445. 08.10.74.
- 23. Способ парогазовой активации углеродсодержащих материалов. Авт.свид.№827383. С 018 31/08; В 01J 19/04. Глушанков С.Л. и др. Бюллетень №17, 1981.
- 24. Дубинина М.М. Адсорбция и пористость.— М.: Химия, 1972.—127с.
- 25. Большая медицинская энциклопедия.— М.: 1950. т.12.—c.250.
- 26. Понкина Н.А., Иойлева К.А. и др. Исследование адсорбции красителей сосновым лигнином./ Вопросы использования древесины в сульфатно-целлюлозном производстве: Труды Конференции Ан СССР.— Петрозаводстк. 1963.— Вып.38.—с.26—30.
- 27. Чупка Э.И., Оболенская А.В., Никитин В.М., Алдошин В.Г. О деструкции лигнина при сульфатной варке./ Сб. Химия древесины.6.— Рига: Зинатне, 1970.
- 28. Чупка Э.И., Оболенская А.В., Никитин В.М. Исследование лигнинов методами фракционирования./ Докл. сов.-финск. симпоэ.- Л.: 1968.
- 29. Гасси Н. Химия процессов деструкции полимеров.— М.: Госхимивдат, 1959.
- 30. Чупка Э.И., Оболенская А.В., Никитин В.М., Алдошин В.Г. О деструкции и конденсации лигнина при сульфатной варке./ Сб. Химия древесины.6.— Рига: Зинатне, 1970.
 - 31. Freeman E.S. Carrol B.-J.Phys.Chem., 62,1958.394.
- 32. Anderson D.A., Freeman E.S.- J.Polym. Sci., 54, 1961. 253.
- 33. Horowitz H.H., Metzger I.- Anal.Chem., 35, 1963, 10, 1465.

- Т4. Пиялкин В.Н.. Славянский А.К. Изд. высш. учебн. заведений. Лесной журн.. 1966. 127.
 - 35. Stamm A.I. Ind. Enong. Chem., 48. 1956. 3,413/
- 36. Solomon B.. Rozmarin I.. Biro A.. Simionescu Ir.- Cellulose chemistry and technology, 1,1967,5,601.
- 37. Košik M.. Ieratova I.. Rendoš F., Domanski R. Holzforschung und Holzverwertung, 20,1968,1,15.
- 38. Домбург Г.Э.. Сергеева В.Н., Попов А.Н. Кинетика теомораспада сернокислотного лигнина осины./ Сб. Химия доевесины. 6.— Рига: Зинатне, 1970.
- 39. Домбург Г.Э., Сергеева В.Н.. Кошик М.Ф., Салпа Л.Я.- Изв. АН Латв.ССР, сер.хим...4, 1968. 497.
- 40. Домбург Г.Э., Сергеева В.Н., Кошик М.Ф. / Сб. Химия древесины, 4.—Рига: Зинатне, 1967.—с.127.
- 41. Боярская Р.К., Ципкина М.Н. Щелочное десульфирование лигносульфоновых кислот./ Сб. Химия древесины, 6.— Рига: Зинатие, 1970.
- 42. Каминский В.С., Любомирский С.Л. О составе смол, содержащихся в техническом лигнине.— Журн, прикладной химии. 1938.—№12.—с.163—164.
- 43. Шур А.М. Высокомолекулярные соединения.— М.— Высшая школа, 1966.— с.240—241.
- 44. Бордзиловский В.Я. и др./ ЖПХ. 1993.Т.66 Вып.5. c.1060-1068.
- 45. Лебедев П.Д. Расчет и проектирование сушильных установок.— М.: Госэнергоиздат, 1963.
- 46. Филоненко Г.К., Лебедев П.Д. Сушильные установки.- М.: Госэнергоиздат.1952.
- 47. Лыков М.В. Сушка в химической промышленности.— М.: Химия.1970.
- 48. Справочное пособие по теплотехническому оборудованию промышленных предприятий.— Мн.: Высшая школа, 1983.
- 49.Михайлов Н.М. Сушка топлива на электростанциях. - М.: Госэнергоиздат. 1958.
- 50. Лебедев П.Д., Щукин А.А. Теплоиспользующие установки промышленных предприятий.— М.: Энергия, 1970.
- 51. Федоров И.М. Теория и расчет процессов сушки.— М.: Госэнергоиздат, 1955.
 - 52. Романков П.Г., Рашковская Н.Б. Сушка в кипящем

спое. - М.: Химия. 1964.

53. Расумов И.М. Псевдоожижение и пневмотранспорт сыпучих материалов.— М.: Химия. 1964.

54. Романков П.Г. Сушка во взвешенном состоянии.-М.: Химия. 1968.

55. Сыромятников Н.И., Волков В.Ф. Процессы в кипящем слое.— М.: Металлургиздат. 1959.

56. Касаткин А.Г. Основные процесы и аппараты химической технологии.— М.: Химия. 1973.

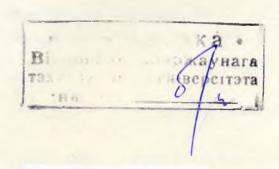
57. Юкельсон И.И. Технология основного органического синтежа.— М.: Химия. 1968.— 848с.

58. Способ получения активного угля. Авт.свид. №806601.C 01B 31/08.04.07.78.

59. Блюменфельд Л.А., Воеводский В.В., Семенов А.Г. Применение электронного магнитного резонанса в химии.— Новосибирск, 1962.

60. A.C. 631447 or 04.04.77. C 01B 31/32.

61. A.C. 1624708 A1 of 21.06.88. C 018 31/32.


62. A.C. 1806991 A1 or 14.06.90. C 01B 31/32.

63. Электротермические процессы химической технологии: Учебное пособие для ВУЗов/Под ред. В.А. Ершова.— Л.: Химия, 1984.—464с..пл.

64. Некрасов Б.В. Основы общей химии. ТЗ.— М.: Химия. 1970.—416с.

65. Краткая химическая энциклопедия. Т1.- М.: Советская энциклопедия, 1961.

66. A.C. 348500 or 27.03.70. C 018 31/08.

СОДЕРЖАНИЕ

4	4.	1.3	

Ţ.	АНАЛІ	ИЗ ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ ПО УТИЛИЗАЦИИ
	УГЛЕ(СОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ ОТХОДОВ
	1.1.	Характеристика исходного растительного сырья 1
	1.2.	Особенности технологии получения лигнина 7
	1.3.	Химический состав гидролизных лигнинов 8
	1. , 4 ,	Переработка древесины
	1.5.	Переработка торфа
	1.6.	Переработка лигнина
	1.7.	Физико-химические свойства продуктов пиролиза
		углесодержащих веществ и области их применения 18
	1.8.	Получение активированного угля и его адсорб-
		ционные свойства
	1.9.	Кинетические закономерности раслада лигнина 37
II	" эксі	ЛЕРИМЕНТАЛЬНАЯ ЧАСТЬ
	2.1.	Исследование параметров исходного лигнина 44
	2.2.	Исследование кинетических закономерностей
		процесса гидроливного лигнина
	2.3.	Технико-экономические расчеты трех типов су-
		шильных установок для сушки лигнина произво-
		дительностью 250 кг/ч по сухому материалу 57
	2.4.	Исследование процесса пиролиза лигнина и вы-
		явление оптимальных параметров технологии 74
	2.5.	Исследования по расширению области использо-
		вания лигнинного угля
	ЗАКЛ	0ЧЕНИЕ
	£41 Y	DO TAMBA
	71V1 E	PATYPA