МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ БЕЛАРУСЬ ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

УДК 621.483:677167/68 № гос.регистрации 19961916 Инв.№

ТВЕРЖДАЮ:
Проректор по изучной работе ВГТУ
С.М.ЛИТОВСКИЙ
1997 г.

Omrem

по госвюджейной ЖИР № 397

«РАЗРАБОТАТЬ ЭНЕРГОСБЕРЕГАЮЩУЮ ТЕПЛОНАСОСНУЮ УСТАНОВКУ ДЛЯ УТИЛИЗАЦИИ ВТОРИЧНЫХ ЭНЕРГОРЕСУР-СОВ (ВЭР) ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ»

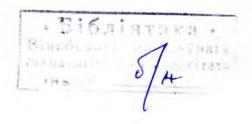
(заключийеньний)

Начальник НИС

Зав.кафедрой "Технология и оборудование машиностроительного производства", руководитель темы, к.т.н., доц.

Felie

С.А.БЕЛИКОВ


В.И.ОЛЬШАНСКИЙ

Burneber-1997

СОДЕРЖАНИЕ

	стр.
АННОТАЦИЯ	3
СПИСОК ИСПОЛНИТЕЛЕЙ	4
1. ВВЕДЕНИЕ	5
2. ВЫБОР И АНАЛИЗ РАБОЧИХ АГЕНТОВ ДЛЯ ТЕПЛОНАСОСНО УСТАНОВКИ	_
3. СХЕМА И ПРИНЦИП РАБОТЫ ТЕПЛОНАСОСНОЙ УСТАНОВИ	КИ12
4. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ ТЕПЛООБМЕННЫХ АППАРАТОВ ДЛЯ ТЕПЛОНАСОСНОЙ УСТАНОВКИ ТЕПЛОВО МОЩНОСТЬЮ ОТОПИТЕЛЬНОЙ СИСТЕМЫ 10 КВТ	
5. ТЕПЛОВОЙ РАСЧЕТ КОНДЕНСАТОРА ТЕПЛОНАСОСНОЙ УСТАНОВКИ	18
6. ТЕПЛОВОЙ РАСЧЕТ ИСПАРИТЕЛЯ ТЕПЛОНАСОСНОЙ УСТАНОВКИ	23
7. ТЕПЛОВОЙ РАСЧЕТ ПЕРЕОХЛАДИТЕЛЯ	
ВЫВОДЫ	29
ЛИТЕРАТУРА	30

СПИСОК ИСПОЛНИТЕЛЕЙ

1.	ОЛЬШАНСКИЙ Валерий Иосифович	к.т.н., доц. зав.кафедрой ТиОМП, руководитель темы
2.	ОЛЫПАНСКИЙ Анатолий Иосифович	к.т.н.,доц. кафедры «Охрана труда и промэкология»
3.	РОТЕНБЕРГ Валерий Ефимович	ст.преподаватель кафедры СМ и ПМ
4.	КОТОВ Алексей Анатольевич	асс.кафедры "Охрана труда и промэкология"
5.	ДРОЗДОВА Ольга Николаевна	Зав.лабораторией кафедры ТиОМП
6.	ПРЫГУН Валентина Викторовна	ст.лаборант кафедры информатики

АННОТАЦИЯ

на научно-исследовательскую работу №397

"РАЗРАБОТАТЬ ЭНЕРГОСБЕРЕГАЮЩУЮ ТЕПЛОНАСОСНУЮ УСТАНОВКУ ДЛЯ УТИЛИЗАЦИИ ВТОРИЧНЫХ ЭНЕРГОРЕСУРСОВ (ВЭР) ТЕКСТИЛЬНОЙ ПРОМЫПЛЕННОСТИ"

Проведен полный теплотехнический расчет теплонасосной установки тепловой мощностью 10 кВт. Рассмотрена схема и принцип работы теплонасосной установки. Построен цикл теплонасосной установки в диаграмме lg P-i для фреона R142. Представлены теплотехнические расчеты теплообменных аппаратов-конденсатора, испарителя, персохладителя и определены поверхности теплообмена аппаратов, массовые расходы хладагента, и теплоносителей на конденсатор и испаритель. Определны мощность электродвигателя для привода компрессора, выбран тип и марка компрессора, установлен коэффициент преобразования тепла, разработана техническая документация. Основные расчетные данные по ТНУ даны в сводной таблице.

Стр. 30, табл. 4, рис. 5, библ. 7.

1. ВВЕДЕНИЕ

Эффективное использование топливно-энергетических ресурсов, особенно для Республики Беларусь, не обладающей собственными запасами всех видов топлива, неизбежно включает весь комплекс задач по поиску и разработке альтернативных источников энергии, в том числе и низкопотенциальных для создания теплоэнергетических установок с высоким тепловым КПД, дающим значительное сокращение расхода топлива.

В связи с полной самостоятельностью Республики Беларусь и других стран СНГ произошла полная переоценка различных способов экономии топлива, ввиду непрерывно увеличивающейся стоимости топливно-энергетических ресурсов и то, что раньше не оправдывалось экономически, теперь становится не только выгодным, но и неизбежно необходимым.

Одним из эффективных мероприятий по экономии топлива и энергии и защите окружающей среды от теплового и пылегазового загрязнения являются теплонаносные установки (ТНУ), преобразующие низкопотенциальную теплоту различных стоков и тепловые отходы промышленных предприятий в тепловую энергию с более высокой температурой, пригодную для многих целей, в том числе для теплоснабжения и горячего водоснабжения предприятий.

В странах Западной Европы и США уже более 30 лет выпускаются ТНУ различной мощности, и их производство быстро продолжает расти, а область применения непрерывно расширяется. Количество выпускаемых различных тепловых насосов составляет десятки миллионов установок в год. Отсутствие интереса к ТНУ в бывшем СССР объясняется только крайней дешевизной топливно-энергетических ресурсов и низкой стоимостью электроэнергии. В настоящее время в России (уже в течение двух лет) налаживается выпуск теплонасосных установок различной мощности.

Особенно выгодным и эффективным становиться применение теплонасосных установок при использовании тепловых вторичных энергоресурсов (ВЭР) в текстильной и легкой промышленности, имеющей огромный выход ВЭР в виде теплоты сбросных растворов с температурой 40...60°С, теплоты паро-воздушной смеси с температурой 60...120°С, а также тепла воздуха от вентиляционных систем. Расчеты показывают, что более 30% от потребляемой энергии за счет различных рациональных способов и схем можно экономить и подавать на вход в теплотехнологические агрегаты и установки, или использовать для теплоснабжения, горячего водоснабжения, для нагрева технологической воды, для нагрева воздуха в сущильных установках и т.д.

ЛИТЕРАТУРА

1.Перельштейн И.И., Парушин Е.Б. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов. - М.: Легкая и пищевая промышленность, 1984. 232 с.

2.Промышленные фтороорганические продукты/Справочник. - Л.: Химия, 1990. 460 с.

3. Томановская Т.Ф., Колотова Б.Е. Фреоны. - Л.: Химия, 1970. 182 с.

4.Быков А.В., Бежанишвили Э.М., Калнинь И.М. Холодильные компрессоры. - М.: Колос, 1992. 304 с.

5. Лебедев П.Д., Щукин А.А. Теплоиспользующие установки промышленных предприятий. - М.: Энергия, 1970. 408 с.

6. Михеев М.А., Михеева И.М. Основы теплопередачи. - М.: Энергия, 1973. 320 с.

7. Данилова Г.Н., Филаткин В.Н. Сборник задач по процессам теплообмена пищевой и холодильной промышленности. - М.: Агропромиздат, 1973. 32. С.

віблічтока в пв. Ло Ди

