СОВРЕМЕННЫЕ ПРИРОДООХРАННЫЕ МЕРОПРИЯТИЯ В ПРОИЗВОДСТВЕ ЭЛАСТОПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Ибрагимов А. Т.¹, д.т.н. (DSc), проф., Ясинская Н. Н.², д.т.н., доц.

¹Ташкентский институт текстильной и легкой промышленности, е. Ташкент, Республика Узбекистан ²Витебский государственный технологический университет, е. Витебск, Республика Беларусь

Реферат. В статье рассмотрены научные подходы эффективных способов решения по оздоровлению экологической обстановки в химической сфере промышленности путем многократной переработки (утилизации) отходов и регенерации вторичного сырья полимерной продукции в производстве эластомер-композиционных материалов, которые имеют важное значение в целях обеспечения ресурс- и энергосбережении, а также при их дальнейшего использования в качестве адгезивных добавок в составе смеси резинотехнических изделий. Приведены аналитические результаты исследования по изучению источников образования загрязняющих веществ в атмосферном воздухе, вычислено удельное значение уровня эмиссии выбросов в окружающую среду при производстве разных типов эластополимерных материалов.

<u>Ключевые слова</u>: термореактивные полимеры, термомеханическая обработка, регенерация, измельчения, резиновые порошки, вулканизация, литье, утилизация.

В настоящее время, во всем мире, еще более очевидным и наглядным становятся роль человеческого фактора – интеллекта в обеспечении безопасности жизнедеятельности существования окружающего мира. На данный момент реально проявляются угрожающее влияние природных катаклизмов – негативных явлений в виде техногенных факторов, причины возникновения большинство из которых тесно связаны именно с человеческим индивидом и их действиям. Серьезными последствиями в природу колоссальный ущерб наносят очаги возгорания лесных пожаров и масштабы распространения поводков. Увеличение урбанизации населения, бурное развитие технологии и постоянное наращивание объемов выпуска товаров народного потребления, в т. ч. полимеров синтетического происхождения – привели к существенному накоплению безвозвратных отходов производства, наращиванию предельного уровня концентрации загрязняющих веществ в окружающую среду, в частности, сероводорода. Во всех этапах развитии инфраструктуры сферы экономики, в т. ч. химической, металлургической, целлюлознобумажной, полиграфической, пищевой и в других отраслей промышленности, а также жилищно-коммунального хозяйства требуются принятие срочных необходимых мер в плане контроля уровня эмиссии загрязняющих веществ в окружающую среду, строгого действующих выполнения за соблюдением норм правил технике И ПО пожаробезопасности, максимально реализовать заранее предусмотренные природоохранные мероприятия в рамках создания и освоения гибких систем управления, связанные с использованием разнообразных продуктов синтеза [1–5]. Крупнейшим потребителем эластополимерных материалов является строительная индустрия, их доля сказывается в широком применении при изготовлении различных конструкций в производственных условиях, способствующие придавать не только легкость, упругость и высокую химическую стойкость, но и сравнительно прочные стабильные декоративные свойства, удобством и простотой доступного применения технологических узлов-агрегатов и цифровых оборудований.

В ряде европейских государств чаще всего внедряются современные типы высокотехнологичных эффективных способов рационального и многократного повторного использования утилизации вторичной переработки полимерного сырья, такие как: сжигание с целью получения альтернативных источников энергии; термическое разложение до исходных мономеров (пиролиз, деструкция и др.). Сжигание отходов в мусоросжигательных печах не является рентабельным способом утилизации, поскольку предполагает предварительную сортировку исходного бытового и/или строительного мусора. При

УО «ВГТУ», 2024 **439**

процессе сжигания происходят безвозвратная потеря ценного химического сырья и загрязнение окружающей среды токсичными вредными веществами дымовых отравляющих газов. Значительное внимание при утилизации вторичного полимерного сырья уделяется к термическим процессам разложения органических веществ с целью получения разных родов по агрегативности и составу полезных сопутствующих продуктов, как доступный способ преобразования высокополимеров в низкомолекулярные соединения. Важное значение имеют процессы, связанные с пиролизом, который является термическим разложением органических веществ с последующим получением на их основе разных по составу полезных сопутствующих продуктов. Так, при более низких температурах (до 600 °C) образуются в основном жидкие смеси, а выше этой отметки – газообразные, вплоть до технического углерода – сажи.

Серийный выпуск промышленного производства синтетических каучуков является многоступенчатым процессом, технологические аспекты разработки требуют масштабного планирования и освоения этапов проведения синтеза органических веществ, принципы которых основываются и взаимосвязаны с закономерностями химии и физики высокомолекулярных соединений. Успехи достижения в области синтеза полимеров широко открывают новые горизонты возможностей для изготовления конструкционных материалов с самыми разнообразными свойствами. Поэтому в настоящее время проблема переработки отходов полимерных материалов обретает актуальное значение не только с позиций охраны окружающей среды, но и создания доступных источников материальных и энергетических ресурсов с наличием альтернативного вторичного сырья. Вместе с тем решение вопросов, связанных с охраной окружающей среды, требует значительных капитальных вложений. В таблице 1 приведены показатели уровень загрязнения при производстве эластополимеров, вырабатываемые в цикле вулканизации каучука общего назначения.

Таблица 1 – Текущие уровни эмиссии загрязняющих веществ в окружающую среду при производстве эластополимерных материалов на основе бутилкаучука марки СКБ

Выбросы и сбросы	Удельное значение, кг/т
Углеводороды (предельные С₁ – С₅ исключая метан)	12
Хлорэтан (этил хлористый)	9
Спирт метиловый	0,4
Изобутилен (изобутен)	0,9
Изопрен (2-метилбутадиен-1,3)	0,8
Метанол (метиловый спирт)	18
Нефтепродукты	4,5
Взвешенные вещества	4,5
ΧΠΚ	90
рН (ед.)	4–12

При производстве каучуков загрязняющие вещества в окружающую среду попадают с воздушными выбросами и сточными водами. Основными причинами возникновения источников выделения токсичности являются не соблюдения режимов эксплуатации технологического оборудования и ведение работы без наличия локальных систем коммуникации замкнутого водоснабжения. В таблице 2 занесены данные по образованию токсичных вредных выбросов и загрязняющих веществ в виде сбросов при производстве бутилкаучука суспензионного и галобутилкаучуков.

Таблица 2— Текущие уровни эмиссии в окружающую среду при производстве бутилкаучука суспензионного и галобутилкаучуков

Загрязняющие вещества в виде выбросов	Удельное значение, кг/т
Диоксид азота	6,5
Оксид азота	1,1
Бромистый водород (гидробромид)	2,0
Метан	6,8
Диоксид серы	2,2
Оксид углерода	9,7

Окончание таблицы 2

OROTHATIVE TAGNINGBI Z	
Загрязняющие вещества в виде выбросов	Удельное значение, кг/т
Хлор	3,4
Хлористый водород	8,8
Углеводороды (предельные С₁ – С₅ исключая метан)	0,76
Углеводороды предельные С6 – С10	1,54
Этилен	0,60
Минеральное масло	3,2
Этиленгликоль (1,2-этандиол)	5,8
Изобутилен (изобутен)	0,92
Изопрен (2-метилбутадиен-1,3)	0,03
Гидроокись натрия (едкий натр, каустическая сода)	3,6
Бром	87
Пыль каучука ГБК	0,073

Образующиеся отходы, в виде шламов используют для широкого потребления в строительной сфере индустрии, в частности, при изготовлении легких (пустотелых) конструкций и гидро-, тепло-, шумоизоляционных крепежных материалов.

Список использованных источников

- 1. Рахимов, М. А., Рахимова, Г. М., Иманов, Е. М. Проблемы утилизации полимерных отходов // Фундаментальные исследования. 2014. № 8-2. С. 331–334; URL: http://www.fundamental-research.ru/ru/article/view?id.
- 2. Зайнуллин, Х. Н., Абдрахманов, Р. Ф., Ибатуллин, У. Г., Минигазимов, И. Н., Минигазимов, И. С. Обращение с отходами производства и потребления. Уфа: Диалог, 2005. 202 с.
- 3. Утилизация полимерных материалов, используемых в строительстве / Пахаренко В. А., Пахаренко В. В., Яковлева Р. А. «Пластмассы в строительстве», изд. НОТ Журн. Фундаментальные исследования. 2014. № 8 Раздел: Технические науки, Ч. 2. С. 331–334.
- 4. Никогосов, П. С., Куценко, С. А. Пути экологически чистой утилизации полимерных отходов. Режим доступа: http://www.ostu.ru.
- 5. Ибрагимов, А. Т., Ходжаева, С. О., Каримов, С. Х. Контроль уровня эмиссии в окружающую среду очистка сточных вод и утилизация твердых отходов в производстве эластомеров / ТГТУ им. И. Каримова + КГУ им. Бердака. Межд. научтехн. On-line конф. «Проблемы и перспективы инновационной техники и технологий в сфере охраны окружающей среды» Сб. тр. International scientific and technical on-line conference. Problems and prospects of innovative technology and technologies in the field of environmental protection. Proceedings of the ECO conference. Part-1. 3-section. September 17–19, 2020, Tashkent. P. 100–101.

УДК 676.2:675.81

ИССЛЕДОВАНИЕ СПОСОБА ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ХРОМОВОЙ СТРУЖКИ КОЖИ ДЛЯ ПРИМЕНЕНИЯ ЕГО В ЦЕЛЛЮЛОЗНО-БУМАЖНОЙ ПРОМЫШЛЕННОСТИ

Кадирова Н. Р., докторант, Рафиков А. С., проф.

Ташкентский институт текстильной и легкой промышленности, г. Ташкент, Республика Узбекистан

Реферат. Впервые получена упаковочная бумага на основе макулатуры, обработанной хромовой стружки и проклеивающего раствора коллагена или акриловой эмульсии. Произведена предварительная подготовка хромой стружки в 2 %-ном растворе гидроксида натрия. Исследовано впияние щелочной обработки хромовой стружки на степень помола. Обнаружено уменьшение шероховатости поверхности полученных

УО «ВГТУ», 2024 **441**