- Модифицированный метод Мартиндейла, М.: Стандартинформ. 19 с.
- 3. Железняков А.С., Шеромова И.А., Старкова Г.П., Данилов А.А., Малько Т.В. RU 2516894C1. Устройство для оценки повреждаемости нитей текстильных материалов при шитье. Заявка № 2013110257/15 от 07.03.2013.
- 4. Гойс Т.О., Матрохин А.Ю., Грузинцева Н.А., Баженов С.М., Вахонина С.А., Чистякова Н.Э. Способ автоматизированного определения показателей повреждаемости геотекстильных полотен в процессе эксплуатационных испытаний. Заявка № 2015107655 (012229) от 04.03.2015 на получение патента РФ на изобретение (положительный результат формальной экспертизы от 27.04.2015 г.).

УДК 677.017

КЛАССИФИКАЦИЯ И ОЦЕНКА КАЧЕСТВА ТКАНЕЙ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Гриднева Т.М., доц., Курденкова А.В., доц.

Московский государственный университет дизайна и технологии, г. Москва, Российская Федерация

<u>Реферат.</u> В работе предложена классификация тканей для спецодежды, а также проведено исследование физико-механических свойств образцов и сравнение результатов с нормами ГОСТ 11209.

<u>Ключевые слова:</u> ткани для спецодежды, физико-механические свойства, классификация, норма.

Ткани для специальной одежды имеют широкую область применения, которая выбирается в зависимости от необходимых защитных свойств. В связи с этим целесообразно классифицировать ткани по группам, пропиткам и другим особенностям, а также по назначению. Основные группы тканей для спецодежды приведены в таблице 1.

Таблица 1 – Основные группы тканей для спецодежды

Группа тканей	Тип ткани	Пропитка, особенности	Назначение
1. Огнезащитные и защищающие от электрической дуги	Метеор, Скала, Джемени, Геркулес	Пропитка Proban	Сварка, металлургия, добыча и переработка нефти и газа
2. Кислотоводогряземаслостойкие	Индестрактэбл, Супербанд-мастер	Пропитка Hydrofoil	Нефтепереработка и химическая промышленность
3. Антистатические	Коверстат, Индестрактэбл Негастат, Супербанд-мастер Негастат	С углеродной нитью (новое поперечное сечение в виде треугольника)	Электроэнергетика, переработка нефти и газа и др.
4. Защитные ткани для чистых производств («барьерные»)	Ткани серии Вектрон (Vectron)		Медицина, электроника, фармакология
5. Сигнальные	Луминекс (Luminex)		Транспорт и дорожные работы
6. Защита от электромагнитного и радиоволнового излучения	Ткани серии Радар (Radar)		92
7. Антибактериальные	Ткани серии Биогард (Biogard)	Пропитка "Sanitized"	Медицина, пищевая промышленность

В работе исследовались ткани: ткань «Премьер — Cotton 350» арт. 10409 с масло, - водоотталкивающей (МВО) и водоотталкивающей (ВО) отделками и ткань антистатическая «Премьер-250» арт. 81408А-М с нефте, - масло, - водоотталкивающей (НМВО) и масло, - водоотталкивающей (МВО) отделками.

YO «BITY», 2016 **209**

Важным является анализ устойчивости специальных свойств тканей для спецодежды в процессе эксплуатации, т.е. после многократных мокрых обработок. ГОСТ 11209 «Ткани хлопчатобумажные и смешанные защитные для спецодежды. Технические условия» нормирует число таких обработок.

По результатам анализа протоколов испытаний сделан вывод о выполнении программы проведенных испытаний и о полном соответствии показателей качества продукции значениям, регламентируемым нормативной документацией. Сами данные результатов испытаний и нормы по показателям представлены в таблице 2.

Таблица 2 – Сравнение фактических и нормативных значений

Наименование показателя	Результаты испытаний				
качества	«Премье	r'		Cotton 350»	
	норма	факт	норма	факт	
Сырьевой состав, %		50 05)//E 400	
- основа		ПЭ – 67		Х/Б — 100	
<i>A</i> -,		Х/Б – 33)//E 400	
-уток		ПЭ – 67		Х/Б — 100	
		Х/Б – 33			
Наличие токопроводящей нити	005:40	+	050:47	-	
Поверхностная плотность, г/м²	265±13	258	350±17	357,2	
Разрывная нагрузка полоски					
материала 50×200, Н					
- основа	не менее		не менее		
70 -	1000	1101,5	1300	1565,1	
- уток	1000	1121,1	850	888,9	
Раздирающая нагрузка, Н			-		
- основа	не менее		не менее		
C.	40	55,1	55	63,7	
- уток	50	58,8	55	58,8	
Стойкость к истиранию, циклы	не менее	10856	не менее	6939	
• , ,	7500		5000		
Изменение линейных размеров	1				
после мокрой обработки, %	10.				
до стирки:	4				
- основа	- 1,0	- 0,3	±1,5	+ 1,2	
- уток	±1,0	- 0,3	±1,0	+ 0,1	
после 5-ти стирок:					
- основа	- 1,5	- 0,5	- 1,5	- 0,1	
- уток	±1,0	- 0,7	±1,0	0	
Устойчивость окраски к воздействию	не менее	5/5/4-5	не менее	5/4-5	
стирки, баллы	4/4	4	4/4		
Устойчивость окраски к воздействию	не менее		не менее		
«пота», баллы	4/4	5/5/4-5	4/4	5/4-5	
Устойчивость окраски к воздействию			4		
трения, баллы					
сухому	не менее		не менее	Z	
	3	4-5	3	4	
мокрому	3	3	_	4 5	
Удельное поверхностное				' O ₄	
электрическое сопротивление, Ом	105	1.5×104		70.	
- до стирки	105 105	1,5x104	_	- 7	
- после 5-ти стирок	100	7,3x103	_	_	
Нефтеотталкивание, баллы	HO MOUGO				
- до стирки	не менее 5	5	_		
- после 5-ти стирок	4	5	_	_	
- после э-ти стирок Маслоотталкивание, баллы	7	3		_	
- до стирки	не менее		не менее		
40 OTHERM	5	6	5 Te Menee	6	
- после 5-ти стирок	4	5	4	6	
1100010 0 TH OTHPOR			-T		

Окончание таблицы 2

Llaurena anno anno anno anno	Результаты испытаний			
Наименование показателя	«Премьер-250»		«Премьер-250»	
качества	норма	норма	норма	норма
Маслоотталкивание, баллы				
- до стирки	не менее		не менее	
	5	6	5	6
- после 5-ти стирок	4	5	4	6
Водоупорность, мм вод ст.				
- до стирки	не менее		не менее	
	200	318	200	320
- после 5-ти стирок	180	316	160	315
Водоотталкивание, мм вод ст.				
- до стирки	не менее		не менее	
	6	6	6	6
- после 5-ти стирок	5	5	4	6
Индекс токсичности, %	70-120	103,2	70-120	104,4

По идентификационным показателям, приведенным в таблицы 2 следует, что поверхностная плотность ткани «Премьер-Cotton 350» больше, чем у ткани «Премьер-250», однако наличие у ткани «Премьер-250» токопроводящей нити улучшает ее специальные защитные свойства.

По физико-механическим свойствам следует, что наиболее выносливой является ткань «Премьер-250», так как ткань в своем составе содержит полиэфирные волокна, более устойчивые к многократным воздействиям различных механических факторов.

В процессе лабораторных исследований целесообразно систематизировать свойства тканей для спецодежды по идентификационным, физико-механическим, специальным защитным и токсикологическим признакам. Важным является анализ устойчивости специальных свойств тканей для спецодежды в процессе эксплуатации, т.е. после многократных мокрых обработок. По результатам анализа протоколов испытаний сделан вывод о полном соответствии показателей качества продукции значениям, регламентируемым нормативной документацией.

Список использованных источников

- 1. Кирюхин С.М., Шустов Ю.С. Текстильное материаловедение. -М: Колос С, 2014 г.
- 2. ГОСТ 11209 «Ткани хлопчатобумажные и смешанные защитные для спецодежды. Технические условия».

УДК 675.813

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОТХОДОВ – МАТЕРИАЛЫ БУДУЩЕГО

Грошев И.М., доц., Герасимович Е.М., асп.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Реферат. Одно из важнейших направлений, определяющих развитие всех отраслей промышленности, — это новые материалы. Изменения укладов жизни человечества связаны с открытием и освоением производства новых материалов. Материалы — ступени нашей цивилизации, а новые материалы - трамплин для прыжка в будущее, меняющий облик нашего бытия. Создание изделий с требуемыми свойствами возможно благодаря композиционным материалам. В статье рассматриваются новые технологии получения композиционных материалов из отходов производства, которые позволяют решать проблемы загрязнения окружающей среды, расширять ассортимент выпускаемой продукции и снижать затраты на ее производство.

<u>Ключевые слова</u>: композиционные материалы, отходы, технология.

Прорыв в новые области знаний, технологий, создание изделий с требуемыми

YO «BITY», 2016 **211**